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Abstract
The goal of this project is to design and develop protection mechanisms for protecting users’

data on personal cloud-storage providers (CSPs) against data analysis by 3rd Party Apps. As

we have shown in a previous work, users are highly alerted when they know what insights can

extracted about them from their data on Google Drive. This highlights the importance of such

insights and the need for mechanisms for protecting the data from unsolicited 3rd parties

that get unnecessary access to these insights. Such insights are typically extracted by using

machine learning and natural language processing techniques, such as topic modelling, entity

recognition, sentiment analysis, face clustering, etc.

One way to protect this data is to encrypt it in the first place before sending it to the CSP.

However, this carries the disadvantage that users are no more able to use 3rd party services

with protected data. Another way is for users to not install apps that require extra permissions.

However, this is not always possible as there might not be an app that requests the minimal

permissions and still gets the job done for the user. Hence, we propose a new mechanism

that works by adding dummy files to the user’s account in order to result in dummy insights

generated instead of true insights. This way apps could still work, but when they analyse the

whole cloud storage account of the user, they will not be able to generate a profile of the user

that can be used in providing ads, spying, or for other purposes.

Key words: Privacy, Adversary Machine Learning, Cloud Spaces
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Zusammenfassung
Das Ziel dieses Projektes ist es, entwerfen und entwickeln Schutzmechanismen für den Schutz

der Daten der Nutzer auf persönliche Cloud-Speicheranbieter (CSPs) gegen Datenanalyse

von 3rd Party Apps. Wie wir in einem früheren Arbeiten gezeigt, werden die Benutzer sehr

alarmiert, wenn sie wissen, was Erkenntnisse über sie aus ihren Daten auf Google-Laufwerk

extrahiert. Dies unterstreicht die Bedeutung solcher Erkenntnisse und die Notwendigkeit

von Mechanismen für den Schutz der Daten vor unerwünschten 3. Parteien, die unnötigen

Zugang zu diesen Einsichten zu erhalten. Solche Erkenntnisse sind in der Regel mit Hilfe

des maschinellen Lernens und der Verarbeitung natürlicher Sprache Techniken, wie Thema

Modellierung, Entity Recognition, Sentiment-Analyse, Gesicht Clustering usw. extrahiert

Ein Weg, um diese Daten zu schützen, ist es in erster Linie zu verschlüsseln, bevor dem LSP

zu senden. Allerdings führt dies den Nachteil, dass Benutzer nicht mehr in der Lage, 3rd-

Party-Services mit geschützten Daten zu verwenden. Ein anderer Weg ist, damit Benutzer

Anwendungen, die zusätzliche Berechtigungen erforderlich installieren. Dies ist jedoch nicht

immer möglich, da es möglicherweise nicht eine App, die die minimalen Berechtigungen an-

fordert, und trotzdem wird die Arbeit für den Benutzer durchgeführt werden. Daher schlagen

wir vor, einen neuen Mechanismus, der durch Zugabe von Dummy-Dateien auf das Konto

des Benutzers, um in Dummy Erkenntnisse statt der wahren Erkenntnisse generiert führen

funktioniert. Auf diese Weise apps könnte noch funktionieren, aber wenn sie die gesamte

Cloud-Storage-Konto des Benutzers zu analysieren, werden sie nicht in der Lage, ein Profil

des Benutzers, die bei der Bereitstellung von Anzeigen, Spionage, oder für andere Zwecke

verwendet werden können, zu generieren.

Stichwörter: Datenschutz, Adversarial Machine Learning, Wolke Spaces
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Résumé
Le but de ce projet est de concevoir et développer des mécanismes de protection pour protéger

les données des utilisateurs sur les fournisseurs de cloud de stockage personnels (DSP) contre

l’analyse des données par les applications 3ème Partie. Comme nous l’avons montré dans un

précédent travail, les utilisateurs sont très avertis quand ils savent ce idées peuvent extraite

à leur sujet de leurs données sur Google Drive. Cela souligne l’importance de ces points de

vue et la nécessité de mécanismes pour protéger les données de 3e parties non sollicités qui

obtiennent un accès inutile de ces idées. Ces idées sont généralement extraites en utilisant

l’apprentissage de la machine et des techniques naturelles de traitement du langage, comme

sujet la modélisation, la reconnaissance de l’entité, l’analyse des sentiments, le regroupement

du visage, etc.

Une façon de protéger ces données est de chiffrer en premier lieu avant de l’envoyer à la

CSP. Cependant, cela comporte l’inconvénient que les utilisateurs ne sont plus en mesure

d’utiliser les services 3ème partie avec des données protégées. Une autre façon est destiné aux

utilisateurs de ne pas installer les applications qui nécessitent des autorisations supplémen-

taires. Cependant, ce ne sont pas toujours possible car il pourrait ne pas être une application

qui demande les autorisations minimales et obtient toujours le travail pour l’utilisateur. Par

conséquent, nous proposons un nouveau mécanisme qui fonctionne en ajoutant des fichiers

factices pour le compte de l’utilisateur dans le but de dégager des aperçus fictives générées au

lieu de véritables perspectives. De cette façon, les applications peuvent encore travailler, mais

quand ils analysent l’intégralité du compte de stockage en nuage de l’utilisateur, ils ne seront

pas en mesure de générer un profil de l’utilisateur qui peut être utilisé dans la fourniture de

publicités, d’espionnage, ou à d’autres fins.

Mots clefs : Confidentialité, contradictoire de l’apprentissage machine, Espaces Nuage
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1 Introduction

In this chapter, a brief introduction to the problem we mange to solve is presented. Besides,

two feasible solutions are discussed in this chapter.

1.1 What is the problem

The increasing computing powers of central processing unit (CPU), the surging storage spaces

and growing network bandwidth contribute to a solid hardware infrastructure for the develop-

ments of cloud computing. Technology companies, such as Microsoft, Google, Amazon, Yahoo,

Facebook, Apple and so on, then introduce loads of cloud services which include enormous

storage spaces, email application, document editor and calendar. Almost all works people

used to do on the personal computers could be realized via these cloud services. Gradually,

people start to store a huge amount of data on the servers and cannot get rid of the conve-

nience they bring about. Furthermore, theses technologies companies allow users to install

third-party apps, which further diversify the functionalities of cloud services.

While installing the third-party apps, users notice that they are requested to authorize a list of

permissions to apps. Figure 1.1 demonstrates a typical snapshot of requested permissions

which include the ability to access and manage the files in users’ cloud storage spaces. "Drive

Files to Dropbox" is an app which simply allows users to transfer files from Google Drive to

Dropbox. For such a simple service, it is obvious that "Drive Files to Dropbox" is able to access

more data than it actually needs via the permission "View and manage the files in your Google

Drive." Although the act that demands unnecessary permissions does not make the app a

malicious software, consumers cannot stop but begin to worry about the leakage of privacy

for the first time.

In the technical report [34], Mr. Hamza Harkous states that over two thirds of the top one

hundred popular apps require more data than they truly need. Regardless of requesting

unnecessary permissions unintentionally or purposely, with those data in hand apps could

profile users and get their precise insights, which leads the usage of third-party apps into a

potentially serious problem that personal privacy are at risk right after even installing an easy

and lightweight app. Although Google Play store claims a constant examination is taken place

1



Chapter 1. Introduction

Figure 1.1 – Snapshot of permission requests by ’Drive Files to Dropbox’.

to remove malicious apps, it cannot be overemphasized the importance of precautions.

There are many ways that the leakage of privacy could happen. In the thesis, we manage

to deal with the one arising from the behavior that third-party apps are capable of drawing

profiles of users. The leakage of documents is not the scope of this work.

1.2 Viable methods

To prevent third-party apps from getting personalized insights, the easiest way is to encrypt all

files. In this way, profiling users will definitely be impossible for third-party apps. However,

consumers will not be able to enjoy the services. For example, users can neither read encrypted

documents with PDF Reader app [19] nor in Google Drive. Therefore, it is obvious that the

method overcorrects the problem and is certainly not the solution we seek for.

Another approach is to add some dummy files in users’ cloud storage spaces as a confusion

for third-party apps. The advantage of this technique is that users could enjoy the services of

apps along with keep their privacy safe. The downside, however, is inserting fabricated files in

users’ cloud spaces, which costs disk spaces as well as perplexes users.

In view of the enormous storage spaces users could get [38], let alone most users will not

use up the storage spaces. Besides, a few megabytes of dummy files would result in a good

obfuscation of the information once the algorithm of generating the dummy files is well

developed. Although both methods have its own advantages and disadvantages, we decide to

adopt the second way.

2



1.3. Structure of the thesis

1.3 Structure of the thesis

The thesis will be given in the following structure. In Chapter 2, an introduction to background

knowledge and related works will be discussed. Considering most of documents stored in

the cloud space are composed of textual files and image files. In Chapter 3, the proposed

methodology for adding dummy texts will be presented while the algorithm of adding dummy

images will be introduced in Chapter 4. After that, the experimental results will be given. And

final part will be the conclusions and future work.

3





2 Background and Related Works

In this chapter, some related works will be given. Before that, the permissions third-party apps

could request and what kind of personalized insights they could get will also be stated.

2.1 Permissions that apps request

The permissions that we authorize to third-party apps are the main reason why they can

profile users and get users’ personalized insights. Hence, before getting to know the pro-

posed methodology, we have to realize the permissions and what kind of abilities third-party

apps are capable of once these permissions are authorized to them by users. The permissions

here are involved in Google Drive only and can be applied to Drobox and OneDrive as well [13].

Table 2.1 – Permissions in Google Drive

Permission

View the files in your Google Drive.

View and manage the files in your Google Drive.

View metadata for files in your Google Drive.

View and manage metadata of files in your Google Drive.

View and manage Google Drive files that you have opened or created with this app.

View your Google Drive apps.

Add itself to Google Drive.

View and manage its own configuration data in your Google Drive.

5



Chapter 2. Background and Related Works

As we can see in Table 2.1, there are eight permissions that third-party apps can request. And

only one permission, "View and manage Google Drive files that you have opened or created

with this app", is operated on a per-file basis. This permission gives the apps the ability to

access only the files on which users intend to utilize the service the apps provide. That is to

say, "Drive Files to Dropbox", the app that we introduced in Chapter 1 could only access the

files that users want to transfer from Google Drive to Dropbox. And the other files that users

have no intention to move will not be able to be accessed by the app. But, the permission that

"Drive Files to Dropbox" requests is "View and manage the files in your Google Drive" which

is a full access and will allow the app to access not only the target files but also all the files in

users’ Google Drive.

Viewing and managing metadata of files may seem to be harmless to users. The truth is

metadata reveals more information than users can imagine. For textual files, important

metadata could include owner’s name, editing time, and file type. And XMP, Exif and IPTC are

critical metadata in image files. Third-party apps could know locations users visited, camera

type, patterns of consumers’ habits of using computers and so on via accessing metadata.

Therefore, as long as it is a full access that third-party apps request, no matter data are from

files or metadata, the extra data they could access will become the potential concerns for

privacy leakage.

2.2 Related works

In this section, we discuss some related works. The first subsection is about a technical report

which clearly defines the issue that third-party apps request a full access to users’ files and

three works that inspire us to come up with the proposed methodology.

2.2.1 What insights apps could get

In this subsection, we depict the personalized insights apps could get from users’ files. The

insights include information of users and users’ friends, families, or colleagues either in texts

or images. In the work, the file types we cover are textual files and image files since they are

the most popular types people store in the storage spaces.

Most of the contents of this subsection are extracted from the technical report [34] finished by

Mr. Hamza Harkous who is affiliated in Distributed Information Systems Laboratory (LSIR) at

École polytechnique fédérale de Lausanne (EPFL). Mr. Harkous also constructed a webpage

[20] to demonstrate the personalized insights that third-party apps might get during the

process of profiling. They are

1. Sentiment

2. Top Collaborators

3. Shared Interests

6



2.2. Related works

Figure 2.1 – ECT visual of a user, extracted from the report [34]

4. Faces with Context

5. Entities, Concepts, and Topics (ECT)

6. Faces on Map

This subsection only gives a simple introduction to the insights. The privacy leakages we try to

tackle are ECT, Shared Interests, and Faces on Map. And they will be stated in more details in

the subsequent chapters.

2.2.1.1 Entities, concepts, and topics (ECT)

We consider the top named entities, for example, Apple, coffee cognitive science and etc,

which are presented in the textual files. The top named entities refer to the entities, which are

either people or place, occur the most times in the text.

Concepts are extracted from the concept tags in users’ documents, such as credit card, personal

finance and so on. Concepts are the high-level abstraction. For example, an author might

write the sentence "I like Kobe Bryant, Lebron James, Stephen Curry and Time Duncan." These

four are named entities. But the concept of this sentence is basketball. So even the word

"basketball" does not appear in the text. We could still get the concept of that text by analyzer

which is discussed in the subsequent chapters.

Then we could get a ECT visual of a user in Figure 2.1, where the size of circle is proportional to

the number of that topic appearing in the users’ documents and different color corresponds

to different entities. For example, the user has more documents about "Julien Assange" than

"Texas."

2.2.1.2 Sentiment

We could get the user’s positive, negative or neutral preference over the entities which are

obtained in ECT.

7



Chapter 2. Background and Related Works

Figure 2.2 – SharedInterests visual of a user, extracted from the report [34]

2.2.2 Top collaborators

Users’ top collaborators are defined as those people who are either the principals or the

witnesses of shared files. Normally, top collaborators are users’ colleagues, families or friends.

Hence, any privacy leakage would involve more victims than users could imagine.

2.2.2.1 Shared interests

With this insight, third-party apps are able to know the mutual interests of users and the

top collaborators. The visualization is demonstrated in Figure 2.2 where the users share

documents related to "Technology", "War and Crime" and "Access Control" with the three

top collaborators, "Jonh Smith", "Huell Babineaux" and "Adam Kerry." Therefore, it is really a

bargain that third-party apps profile once and get insights for four people.

2.2.3 Faces with context

The above insights are associated mainly with users’ textual files. The remaining two insights

are based on users’ image files. This insight indicates the most frequent faces as well as the

concepts appearing in the user’s images.

2.2.3.1 Faces on map

The last insight is about the geographical locations the users’ photos would reveal in the Exif

metadata. And Figure 2.3 is an example showing the locations users ever visited. This insight

is usually obtained by top locations and top faces in all of the photos. Top locations mean that

the location are constantly shown in photos and top faces represent the faces that show up in

the photos the most times. Then, third-party apps could use the insights to recommend some

stores near those locations to these people.

8



2.2. Related works

Figure 2.3 – FacesOnMap visual of a user, extracted from the report [34]

2.2.4 The works that inspire the proposed methodology

In this subsection, some related works about privacy protection are given. The works we

search for are focused on information obfuscation instead of encryption.

2.2.4.1 TraceMeNot

TraceMeNot [33], developed by Mr. Daniel C. Howe and Mr. Helen Nissenbaum, is a browser

extension which protects users from surveillance and profiling by search engines. The method

is not to conceal or encrypt users’ data but to make obfuscations so that search engines would

have difficulties obtaining users’ insights.

2.2.4.2 AdNauseam

AdNauseam [35, 5] was developed by the same research team who built TraceMeNot. AdNau-

seam is a browser extension that is able to protect users from revealing digital footprints to

advertising networks. According to AdNauseam, users’ ad-click pattern is also one of users’

profiles. Hence what AdNauseam does is to automatically click the blocked advertisements on

behalf of users, which turns out to be a visiting record on the ad networks databases. Therefore,

users’ pattern of surfing the Internet is obfuscated. The source code of AdNauseam is released

on GitHub [9].

2.2.4.3 CacheCloak

CacheCloak [30, 31] was developed by Mr. Joseph Meyerowitz and Mr. Romit Roy Choudhury,

which intends to anonymize mobile users’ personal locations while firstly processing the loca-

tion data in a trusted anonymizing server and sending back the processed data to untrusted

location based services in a real-time basis. They claimed CacheCloak could protect users’

location privacy without losing location accuracy or availability.
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3 Methodology for Dummy Texts

In this chapter, the proposed method for adding dummy texts is presented. As mentioned in

Section 1.2 and Section 2.2.4, the methodology in this work is to obfuscate information by

adding dummy files rather than encrypting data. Dummy files include textual files and image

files.

3.1 Three plausible text generators

Adding dummy texts increases the degree of difficulties for adversaries who aim to get true

insights of cloud service users. To achieve the goal of confusing adversaries, the contents

of dummy texts should not be a random combinations of characters, but quasi-human-

written sentences. Besides, the contents of the fabricated texts are extracted from latest news

with various taxonomies instead of some constant sources. The reason for that is to avoid

adversaries from blacklisting certain source as being sources for dummy texts in case the

sources are fixed. Therefore three plausible approaches fulfilling the needs are found and

examined. They are Context-free grammar (CPG), Markov chain model (MCM) and neural

networks. The following sections would be the introductions to the three techniques.

3.1.1 Context-free grammar

In natural language processing, Context-free grammar (CFG) [23] is a way to generate patterns

of strings and is defined as follows:

Definition 1 Context-free grammar

A CFG, G , is defined by a 4-tuple : G = (T ,N ,S ,R), where

• T is a set of terminal symbols.

• N is a a disjoint from T and is referred to non-terminal symbols.
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• S is a start symbol, which is one of the non-terminal symbols.

• R are rules/productions of the form x → y, where x is a nonterminal and y is a sequence

of terminals and nonterminals (may be empty).

■

Therefore, sentences could be generated easily using several G . An example is given to

demonstrate the usage of CFG.

Example 1 A simple example G is given.

T = {a, dog, chased, postman, the}

N = {S, NP, VP, N, V, Det}

S = {S}

R : S → NP VP

VP → N

VP → V NP

NP → Det N

N → dog

N → postman

Det → the

Det → a

V →chased

With the 4-tuple mentioned above, the sentece, "the dog chased a postman", could be derived by

applying the sequences with the start symbol, S:

S
R1→ NP VP
R4→ Det N VP
R7→ the N VP
R5→ the dog VP
R3→ the dog V NP
R9→ the dog chased NP
R4→ the dog chased Det N
R8→ the dog chased a N
R6→ the dog chased a postman

As we could see in the above, the sentence, "the dog chased a postman", is obtained by iteratively

substituting the rules in the sequence : (R1, R4, R7, R5, R3, R9, R4, R8, R6). One can also

12



3.1. Three plausible text generators

derive the sentence using a tree diagram, which is more straightforward to get the feeling of the

derivation of the sentence.

S

NP

Det

the

N

dog

VP

V

chased

NP

Det

a

N

postman

From the above example, we realize that CFG is capable of generating human-written texts as

long as the 4-tuple is well organized. ■

Several years ago, a group of researchers at MIT CSAIL developed a research paper generator,

SCIgen, by using CFG to automatically generate computer science research papers[21]. And it

took everyone by surprise that some of the fabricated research papers were accepted by aca-

demic conferences. Therefore, SCIgen, is undoubtedly a good candidate to generate dummy

texts, even though it is no longer maintained by MIT CSAIL. The source code is available

online[10].

After scrutinizing the source code of SCIgen, we found out there are over three-thousand

lines of rules defined in advance in order to generate a convincing paper of one specified

taxonomy. Since different types of texts require diverse sentence structures and vocabularies,

twenty taxonomies imply twenty predefined G . Nevertheless, the G has to be revised as long

as the source corpus is updated from time to time in case adversaries blacklist the current

source corpus. Although, CFG has been proven by MIT CSAIL to be a valid and powerful way

via acceptances of research papers, its strengths are still compromised by lengthy rules and

routine revisions.

3.1.2 Neural networks

Neural networks [22, 6] is an information paradigm that was inspired by biological nervous

systems. Usually, the networks have an input layer, a hidden layer, and an output layer, as

demonstrated in Figure 3.1. Each layer is composed of several neurons. The connections mean

the excitations of the connected neurons. Every excitation is implemented with a weighted

edge which is based on the excitatory degree of two connected neurons. And the output is

equal to the linear combinations of the weighted inputs. If the network generates a bad result,

then the weightings would be learned again. There are three strategies for learning, supervised
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Figure 3.1 – Typical structure of neural networks.

learning, unsupervised learning, and reinforcement learning.

Back to text generator, Recurrent neural networks (RNN) [28] is a class in neural networks

which is usually used to implement character or text generator. The feature of RNN is that

the presence of the internal states, resulted from a directed cycle structure, contributes to the

internal memory which could be used to process arbitrary sequences of inputs. Figure 3.2

shows a example structure of recurrent neural networks, in which a rectangle is a vector and

red rectangle refers to input vectors, output vectors are in blue and green vectors keep the

RNN’s state. Before applying Neural networks to text generators, there is a simple example for

a character generator which is shown as follows:

Example 2 The example is extracted from the webpage [12].

Suppose there is a list of vocabulary [’h’, ’e’, ’l’, ’o’]. And we would like to get a character "hello."

By following the source code released on GitHub [12], the working procedure of this diagram

is shown in Figure 3.3, where we could see the next letter of "hell" is "o" given letter "o" has the

highest confidence, 2.2 depicted in color green in the blue rectangular, than the other letters.

Each output neuron has four states because of four inputs.

■

The example demonstrates the way to generate a character. By studying the three papers

[29, 32, 37], we can easily extend the character generator to a text generator. The advantage of

neural networks text generator is that it could generate a text that is very close to a human-

written one. However, the whole process is very time-consuming given the number of neurons

and layers. In view of routine updates of source corpus, the processing time is the big concern

of the neural networks text generator.
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3.1. Three plausible text generators

Figure 3.2 – Structure of recurrent neural networks.

Figure 3.3 – Diagram of neural networks character generator, extracted from the webpage [36].

15



Chapter 3. Methodology for Dummy Texts

3.1.3 Markov chain model

Markov chain model is a sequence of states of a certain system in which a present state

depends only on the previous state [27]. A detailed definition of Markov chain is given in the

following.

Definition 2 Markov chain

A set of states, S = {S1,S2, . . .}. The process starts with an initial state and moves from one state

to another state successively. Every move, called a step, is denoted with a transition probability.

Assume the current state is Si and the next state is S j , then the transition probability of this

step is equal to pi j . And Markov property states that pi j is independent of the state prior to Si ,

which could be formalized in a mathematical expression.

Pr (Sn+1 = sn+1|S1 = s1,S2 = s2, . . . ,Sn = sn) = Pr (Sn+1 = sn+1|Sn = sn) = pi j (3.1)

■

Next, we make a classical example, weather prediction, to briefly demonstrate Markov chain

model.

Example 3 Suppose there is a weather model in which a sunny day is 90% likely to be followed

by another sunny day, and a rainy day is 60% likely to be followed by another rain day. The

probability of having a rainy day the next day is 40% given a sunny day today and 10% vise

versa. A transition matrix denoting the transition probability could be constructed.

P =
(

0.9 0.1

0.4 0.6

)

The column of P is labelled ’sunny’ and ’rainy’ in order, so is the row. In addition to P, one could

build a state diagram.

sunny r ai ny

0.1

0.9

0.4

0.6

Assume the observed day is a sunny day with a vector S0 = (1 0), where 1 denoting the sunny

entry and 0 presenting the rainy entry. Then the probability of next day could be calculated

easily:
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3.1. Three plausible text generators

S1 = (1 0)∗P = (0.9 0.1)

S2 = S1 ∗P = (0.9 0.1)∗P = (0.85 0.15)
...

which shows the next day, S1, is 90% likely to be a sunny day while 10% likely to be a rainy day.

And S2 is obtained by multiplying S1 with P.

■

Now, we have a brief understanding of Markov chain model. Then, we could apply Markov

chain model to generate a dummy text from a source corpus. And an example is a good way to

demonstrate the procedure.

Example 4 A text generator using Markov chain model

Suppose the source corpus has some simple sentences,

Today is a sunny day.

Yesterday was a rainy day.

I like sunny days.

You like rainy days.

A sunny day is better than a rainy day.

An apply a day keeps doctors away.

Then, for each vocabulary, we calculate the occurring probability of its next vocabulary and

have the following model,

Today =⇒ is (100%),

is =⇒ a(50%), better(50%),

a =⇒ sunny(25%), rainy(50%), day(25%),

sunny =⇒ day.(100/3%), days.(100/3%), day(100/3%),

day. =⇒ Yesterday(100/3%), I(100/3%), An(100/3%),

Yesterday=⇒ was(100%),

was =⇒ a(100%),

rainy =⇒ day.(67%), days.(33%),

I =⇒ like(100%),

like =⇒ sunny(50%), rainy(50%),

days. =⇒ You(50%), A(50%),

You =⇒ like(100%),

A =⇒ sunny(100%),

day =⇒ is(50%), keeps(50%),

better =⇒ than(100%),

than =⇒ a(100%),

An =⇒ apple(100%),
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apple =⇒ a(100%),

keeps =⇒ doctors(100%),

doctors =⇒ away.(100%),

away. =⇒ Today(100%)

Let’s explain the calculation of probability via the entry,

a =⇒ sunny(25%), rainy(50%), day(25%)

In the source corpus, vocabulary ’a’ is followed by vocabulary ’sunny’ once, ’rainy’ twice and

’day’ once. Hence, ’a sunny’ occurs one out of four as encountering vocabulary ’a’. Next, we could

generate a dummy sentence by randomly pick a vocabulary from the set, {Today, Yesterday, I,

You, A, An}, where each element begins with a capitalized letter.

Assume the start vocabulary is ’An’. The next vocabulary can only be ’apple’, which is followed

only by ’a’. Until now, we have the generated sentence, ’An apple a’. The subsequent vocabulary

has three options, ’sunny’, ’rainy’ and ’day’. Without loss of generality, we pick ’rainy’ over the

other two options because of its higher probability. Afterwards, ’day.’ is chosen over ’days.’ as

well. In the end, the generated sentence becomes ’An apple a rainy day.’

The procedure of the generated sentence is as follows:

An

An apple

An apple a

An apple a rainy

An apple a rainy day.

■

The advantage of this kind of text generator is quickness while training a big source corpus.

However, the disadvantage is that the fabricated sentence may not make any sense. To avoid

generating meaningless sentences, the idea of n-gram is introduced to make a n-gram Markov

chain model, which is presented in the following example.

Example 5 A text generator using n-gram Markov chain model

The Markov chain model, introduced in Example 4, is called unigram Markov chain model

since the current state is dependent on it previous state only. N-gram Markov chain model, as

the name suggests, refers to the fact that current state depends on the previous n states. Let’s run

bigram on the source corpus stated in Example 4 and would get the following model,
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Today is =⇒ a (100%),

is a =⇒ sunny (100%),

a sunny =⇒ day. (100%),

sunny day. =⇒ Yesterday (100%),

day. Yesterday =⇒ was (100%),

Yesterday was =⇒ a (100%),

was a =⇒ rainy (100%),

a rainy =⇒ day. (100%),

rainy day. =⇒ I (100%),

day. I =⇒ like (100%),

I like =⇒ sunny (100%),

like sunny =⇒ days. (100%),

sunny days. =⇒ You (100%),

days. You =⇒ like (100%),

You like =⇒ rainy (100%),

like rainy =⇒ days. (100%),

rainy days. =⇒ A (100%),

days. A =⇒ sunny (100%),

A sunny =⇒ day (100%),

sunny day =⇒ is (100%),

day is =⇒ better (100%),

is better =⇒ than (100%),

better than =⇒ a (100%),

than a =⇒ rainy (100%),

a rainy =⇒ day. (100%),

rainy day. =⇒ An (50%), I(50%),

day. An =⇒ apple (100%),

An apple =⇒ a (100%),

apple a =⇒ day (100%),

a day =⇒ keeps (100%),

day keeps =⇒ doctors (100%),

keeps doctors =⇒ away. (100%),

doctors away. =⇒ Today (100%),

away. Today =⇒ is (100%)

As we can see, most entries are followed by one only vocabulary, which largely reduces the

possibility of randomization. Assume the start bigram is ’An apple’, then by following the model

the final sentence could only be ’An apple a day keeps doctors away.’ Then the fabricated sen-

tences are more likely to be the original sentences as N increases, which can be good if we desire

a meaningful sentence, but would be a disaster for our implementation. Since we want the

dummy sentences to be as random as possible, the bigger N might lead to the situation that all
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sentences are originated from a single news report and adversaries could easily recognize the

dummy texts.

■

3.1.4 Comparison of three text generators

The introductions to the three text generators have been given above. And each one has its

advantages and disadvantages. Now, we run a simple pros and crons analysis of the three text

generators. The main comparisons are focused on the execution time, including the training

time of source corpus and sentences generating time, as well as the degree of convenience

when it comes to updating the source corpus on a daily basis. The analysis is shown in the

following table.

Since the source corpus will be updated routinely and the execution time of the text gener-

ator is required to be as short as possible, we choose to apply Markov chain model in the

text generator. In Table 3.4, although, the fabricated texts of Markov chain model is less like

human-written sentences comparing to the other two method, the idea of N-gram is intro-

duced in Markov chain model to increase the likelihood, as given in Example 5. Therefore, we

choose N-gram Markov chain model as the text generator.

Table 3.4 – Pros/Crons of three text generators

Pros Crons

Context free

grammar

– self define sentence structure – every taxonomy needs unique

rules

– like human-written sentences – updating rules routinely is re-

quired

– execution time is little

Neural

networks

– like human-written sentences – execution time is too much

– easy to operate – training is time-consuming

Markov

chain model

– training a model is fast – less like human-written sen-

tences

– updating source corpus is easy
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Figure 3.4 – Flowchart of generating dummy texts.

3.2 Our implementation to add dummy texts

In this section, the implementation of generating dummy texts is given. The flowchart is

demonstrated in Figure 3.4. In the following subsections, each main function block will be

explained with more details. Before introducing each block, the process to update source

corpus is given firstly.

The idea behind this implementation is to generate dummy texts based on top taxonomies

which refer to those taxonomies appearing the most times in all of the textual files. And we

intend to add dummy texts as many as the real texts. Although the dummy texts are generated

in the perspective of top taxonomies, we would show the obfuscation of texts still work for top

concepts and top entities in the experiments.

3.2.1 Updating source corpus

The process of updating the source corpus dose not apply to every user but is performed every

day. The reason is that the dummy texts are more convincing if the contents come from the

latest news reports, which sheds an illusion to adversaries that the account of the personal

cloud spaces is being accessed routinely. Furthermore, the process makes sure the source

corpus is big enough to decrease the chance of generating two similar dummy texts of same
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taxonomy and prevent adversaries from blacklisting our source corpus.

To gather daily news reports, we use AlchemyAPI [2] which, now part of IBM Watson Developer

Cloud [15], is a popular cloud platform where software developers could utilize the advanced

text analysis api [3] and computer vision api [4] to build useful applications.

While gathering news reports, developers choose interested taxonomy and publication date

in the AlchemyAPI. The returned results are expressed in a JSON format, including title and

url. Then, we capture the contents in the returned urls and store them in the database for

references. And to improve the process of generating dummy texts, contents of same taxonomy

are concatenated together and stored in a local file.

The reasons of gathering news reports with taxonomies rather than concepts or entities are

that AlchemyAPI only allows users to gather news with taxonomies and it is not possible to list

all the concepts or entities in the news reports.

3.2.2 Taxonomy analysis

In order to run the taxonomy analysis, we have to access users’ files in Google Drive. In this

website [20], registered users have authorized us the permission to access and manage all of

their files in Google Drive. By taking advantage of alchemy language api [1], the taxonomy

analyzer could analyze a text and output the taxonomies along with sentiments, concepts and

entities of that text. And the outcomes of the taxonomy analyzer are stored in our database.

Since the taxonomy analysis is a preprocessing step, we assume all registered users have

been analyzed and what we do now is to query the database to get the outcome of a target

Google Drive user, called G-User for convenience in the subsequent contents. The query

to the database is taxonomy-oriented since the dummy texts are generated using specified

taxonomies and is defined in the following:

db.find

({

’fileKind’: ’text’,

’textAnalysisResults.taxonomies’: {$get: []}

})

After all analyzed results are fetched from the database, we could visualize the outcomes in a

histogram. Let’s make an example to show the visualization to get an idea what top taxonomies

actually mean. Figure 3.5 is an example demonstrating the histogram in which ’Sports’ is the

top one taxonomy because it appears in fifty eight texts owned by target G-User. Until now, we

have a taxonomy distributions of real texts owned by the target G-User and this real taxonomy

distributions are demonstrated in the following data structure,
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Figure 3.5 – Demonstration of taxonomy distributions of a G-User

[

{taxonomy: ’Sports’, count: 58}, {taxonomy: ’Technology’, count: 32},

{taxonomy: ’Family’, count: 26}, {taxonomy: ’Science’, count: 17},

{taxonomy: ’Education’, count: 11}, {taxnomy: ’Finance’, count: 6}

]

3.2.3 List of dummy taxonomies

Dummy taxonomies are defined as the ones which do not appear in the list of real taxonomies

obtained in the first part. Alchemy api provides a list of twenty three taxonomies, listed below.

Hence, the dummy taxonomies could be obtained by discarding the real taxonomies from the

list of available twenty three taxonomies.

[

’Art and Entertainment’, ’Automotive and Vehicles’, ’Business and Industrial’,

’Careers’, ’Education’, ’Family and Parenting’, ’Finance’, ’Food and Drink’,

’Health and Fitness’, ’Hobbies and Interests’, ’Home and Garden’,

’Law, Government and Politics’, ’News’, ’Pets’, ’Real Estate’,

’Religion and Spirituality’, ’Science’, ’Shopping’, ’Society’, ’Sports’,

’Style and Fashion’, ’Technology and Computing’, ’Travel’

]

The number of the real taxonomies, however, might be close to twenty three and would

lead to a list of few dummy taxonomies. Hence, we pick the top ten taxonomies from the

real taxonomies and remove these ten taxonomies from the twenty three taxonomies. The

algorithm is stated as follows,
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Figure 3.6 – Demonstration of post texts distribution of a G-User

1. if( (the number of real_taxonomies) > 10 )

real_taxonomies = top 10 in real_taxonomies

2. dummy_taxonomies = all_taxonomies \ real_taxonomies

3.2.4 Dummy taxonomy distributions

Now, we have a list of dummy taxonomies. The next work is to construct a dummy taxonomy

distributions. Since we want to add the same number of dummy texts as the real texts such

that the example histogram after adding the dummy taxonomies would be look like the one in

Figure 3.6 in which the dummy taxonomies are ’Food’, ’Health’, ’Hobbies’, ’Automobile’, ’Pets’,

and ’Art.’ Combining with the number of dummy texts, a dummy taxonomy distributions

would be constructed in the following,

[

{taxonomy: ’Food’, count: 58}, {taxonomy: ’Health’, count: 32},

{taxonomy: ’Hobbies’, count: 26}, {taxonomy: ’Automobile’, count: 17},

{taxonomy: ’Pets’, count: 11}, {taxonomy: ’Art’, count: 6}

]

While implementing the methodology, we only consider top five taxonomies. Hence, we

randomly pick five dummy taxonomies from the applicable list of dummy taxonomies which

we obtained in the last part. Then, constructing a dummy data structure with two key-value

pairs for each chosen dummy taxonomies where the first key, ’taxonomy’, denotes one of the

chosen dummy taxonomies, and second key, ’count’, represents the number of occurrences of

the corresponding taxonomy.

In Figure 3.5, the probability of adversaries getting the top one taxonomies, Sports, is 100% and

is reduced to 50% in 3.6 because of two different taxonomies, Sports and Food, occurring the

same times. Same situation happens to the rest taxonomies. So the methodology guarantees a

50% improvement in obfuscating top taxonomies.
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Figure 3.7 – Demonstration of post texts distribution while adding more dummy taxonomies

Figure 3.8 – Demonstration of post texts distribution while making occurrences of all tax-
onomies identical

To increase the difficulties for adversaries to know the real taxonomies, one could add more

than one dummy taxonomies for a real taxonomy and result in the histogram shown in Figure

3.7 or make all taxonomies have the same appearances, as demonstrated in Figure 3.8. In

Figure 3.7, the probability of getting the real taxonomies is decreased from 100% to 33%.

And in Figure 3.8, the improvement of obfuscating top one taxonomies is increased to 83.3%.

Although these two strategies achieve better information obfuscation, the execution time is

much higher than the original strategy.

3.2.5 Generating dummy texts

After all the preprocessing, we could start to generate dummy texts. The Markov chain model

text generator is operated in the same way as mentioned in Example 5. In our method, we

adopt bigram Markov chain model instead of trigram, quadrigram or higher ones. The reason

is that the trigram and higher gram would result in the dummy sentences generating from the

same news reports or same sentence, which is what we try to avoid. The dummy sentences

are supposed to be as random as possible without losing the likelihood of human-written
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sentences and the situation that dummy sentences come from the same place would violate

the rule of randomization. The pseudo code of this part is presented in the following,

for( each element in the dummy taxonomy data structure )

• The number, element.count, of dummy texts with a specified taxonomy,

element.taxonomy, is generated via invoking Markov chain model text generator.

• At least two hundred words are generated in a text.

• The beginning letter must be capitalized and

the ending letter is either a dot, a question mark, or an exclamation mark.

These dummy texts are distributed in several dummy folders. The number of dummy folders is

equal to the square root of the number of dummy texts. The purpose of scattering the dummy

texts is to prevent putting all eggs in one basket. That is to say, the probability of having the

folder dummy is not 1/#( f older s), but is #(dummy f ol der s)/#( f older s). Moreover, keeping

dummy texts in dummy folders could avoid mixing them with real texts and folders since

G-Users might be confused if there are some texts which they are not familiar with existing in

Google Drive.

3.2.6 Sharing dummy texts

The last step is to share the dummy texts with one of the Google Drive users in order to make

the dummy texts persuading. If we do not share dummy texts with others, all the shared texts

will be regarded as real files. Besides, sharing dummy texts or folders is an obfuscation to

Shared Interest. Hence, sharing dummy texts is necessary.

The way to share dummy texts is to randomly pick a registered users in the website [20]

and share a dummy folder with that user. If sharing with nonmembers of our services, the

dummy files might be shared with adversaries, which would easily compromise the effect of

our methodology.
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In Chapter 3, we talked about the method to generate dummy texts. One important feature in

previous chapter is the construction of dummy taxonomy distributions. In this chapter, the

proposed methodology for dummy images is presented. And the dummy image distributions

also play important role in the process of adding dummy images.

The idiom "A picture is worth a thousand words" explicitly expresses the delicacy of proposed

algorithm in adding dummy photos. The idea behind the proposed algorithm is to find a

doppelganger [24] or a kagemusha [26] of the G-User. A doppelganger or a kagemusha refers

to the double of another person. However, we are not going to find the guy who has a similar

outer appearance of the G-User but the similar photos distribution of the G-User.

The information of images we intent to obfuscate is Face on Map, which is mainly determined

by top locations and top faces. Hence, in this chapter the dummy images are added in the

perspective of top locations and top faces. Since the top faces make sense only in the presence

of top locations, we focus on the images which is either tagged with geography location or

tagged with geography location and face.

The whole flowchart of the algorithm is shown in Figure 4.1 where each block is explained in

more details in the following sections.

4.1 Real photo distributions of a Google Drive user

Before getting the photo distributions, we have to analyze the images of a G-User. The analyzer

is implemented by taking advantage of AlchemyAPI and the results are stored in our database.

The analysis is a preprocessing step for each member in our website.

In order to obfuscate the insights in photos, we have to get photo distributions of a G-User as

the work we did in subsection 3.2.2. We try to obtain the histogram similar to 3.5. The initial

task is to query the G-User in our database. The query to the database is shown as follows:
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Figure 4.1 – Flowchart of generating dummy photos.
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db.find

({

’fileKind’: ’image’,

’imageAnalysisResults.locations’ : {$gt: []},

})

However, there is a problem about granularity of locations in the returned results. That is,

some locations are expressed in a city level and some are denoted with a street level. For

example, Renens VD is located in Lausanne city and they are separated with five kilometers

only. It would be not wise to label them differently in the implementation. Hence, we have

to do a clustering over the locations of the returned results. The algorithm of clustering is

presented as below:

if( array is empty )

Add the location to the array.

else{

if( distance(new location, any existing location) is less than or equal to 10 km )

Label the photo of new location as the same cluster.

else

Add the location to the array.

}

The algorithm applies to all the returned results. The distance function mentioned in the

algorithm refers to the distance between two sets of coordinates. And distance threshold,

default value is set to ten kilometers, is an input parameter. Since we deal with photos which

are tagged with faces and locations as well as tagged with locations only, after clustering, the

returned results are organized as the following data structure:

[
{’location’: ’Lausanne’, ’withFace’: 26, ’withoutFace’: 34},

{’location’: ’Geneva’, ’withFace’: 20, ’withoutFace’: 28},

{’location’: ’Bern’, ’withFace’: 18, ’withoutFace’: 22},

{’location’: ’Zurich’, ’withFace’: 12, ’withoutFace’: 24},

{’location’: ’Basel’, ’withFace’: 6, ’withoutFace’: 6}
]

The returned results could be visualized in a histogram shown in Figure 4.2. Third-patry apps

could have this visualization as well. If no dummy photos are added, the probability of adver-

saries getting the real top locations together with faces or without faces is 100%. Therefore,

our goal is to add dummy photos to obfuscate the visualization. The source of dummy photos

is flickr [8], which is a popular multimedia hosting website.
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Figure 4.2 – Photo distributions of a G-User.

4.2 Selection of cities

Since we try to find a doppelganger of the G-User and do not know where the doppelgangers

might live, we start by choosing a random city which, however, must not be identical to any

one of the top locations we have discussed in section 4.1, otherwise the top locations still

remain the same after adding the dummy photos.

4.3 Calculation of the bounding box

Now, we have an applicable city where the doppelgangers may live. Then search for the

bounding box of this city with a radius equal to forty kilometers. The idea is that we look for

doppelgangers living in this bounding box.

A bounding box, demonstrated in Figure 4.3, is specified by two sets of coordinates, one is at

the upper right corner and the other is at the bottom left corner.

4.4 Photos taken inside the bounding box

With the bounding box, we can search for photos which were taken inside the bounding box.

Since we do not know the doopelgangers’ flickr id, we therefore query the owners of photos

which were taken inside the bounding box.

The query we use for flickr api is:

flickr.photos.search(

bbox: {22.7456, 120.34466, 23.2543, 120.8973},

)
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4.5. Filtering of owners of photos

Figure 4.3 – The bounding box of Kaohsiung city

4.5 Filtering of owners of photos

Removing professional photographers is an optional function here. The algorithm to remove

the professional photographers is stated in the following:

for( each owner obtained from the above block )

flickr.people.getInfo(

userid: flicrId

)

if( the isPro field in the returned query is 1 )

Remove the owner

)

)

Since most works of photographers are sceneries and repetitive faces are rare, it is not natural

that the G-User would have the same photo distributions as professional photographers.

However, from time to time professional photographers contribute to the candidate pools of

doppelgangers.

4.6 Photo distributions of a flickr owner

Until now, we have a candidate pools of doppelgangers who live inside the bounding box.

Then we start to construct the photo distributions for each candidate. The process is similar
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to 4.1. Firstly, gather the locations of photos by querying with flickr api. Since we are dealing

with photos with faces and without faces, there are two queries. One is to query photos with

faces and the other is without faces. And the queries we use are stated in the following block

where first query is for photos with face and the second query is for photos without faces.

flickr.photos.search(

{user_id: flickrId,

has_geo: ’1’,

tags: ’people, portrait, face’ }

)

flickr.photos.search(

{user_id: flickrId,

has_geo: ’1’ }

)

After gathering the information of photos owned by one candidate, we perform the clustering

algorithm to solve the granularity of locations. A data structure like the following is then

constructed.

[
{

’location’: ’Kaohsiung’,

’latitude’: ’23.000’,

’longitude’: ’120.621’,

’photoId’: {’withFace’: [12, 66, 52,63, ...], ’withoutFace’: [43, 68, 17, ...]}

},

{

’location’: Taipei,

’latitude’: ’25.086’,

’longitude’: ’121.560’,

’photoId’: {’withFace’: [11, 55, 89, ...], ’withoutFace’: [19, 65, 88, 93, 96, ...]}

},

{

’location’: Tainan,

’latitude’: ’22.981’,

’longitude’: ’120.94’,

’photoId’: {’withFace’: [10, 91, ...], ’withoutFace’: [77, 76, 60, 62, 51, 53, ...]}

}
]

Then we can visualize the data structure in a histogram shown in Figure 4.4.
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4.7. Hungarian matching

Figure 4.4 – Photo distributions of a candidate

4.7 Hungarian matching

We now have photo distributions of a G-User and candidates of doppelgangers respectively.

Then how do we decide who the doppenganger is? Actually, we can solve the problem by

applying Hungarian matching algorithm [25], also know as bipartite matching algorithm. The

typical matching problem is online dating. Suppose in an online dating website where only

ladies could choose the favorite gentlemen. And the goal of the website administrators is to

maximize the matching pairs. The problem could be visualized in Figure 4.5 where red dash

lines refer to the preferences of ladies over gentlemen and blue lines represent the successful

matching pairs. The matching problem could also be found in other applications such as

network flows, scheduling, work assignments and so on.

The matching algorithm could also be used to solve our problem. Figure 4.6 is the visualization

of the simplified problem in which red dash lines refer to plausible matching solutions while

blue lines denote the final solution. For example, photos located in Zurich has three applicable

matchings which are photos situated in Kaohsiung, Chiayi and Hualien. And the final matching

of Zurich is Hualine. The red dash lines are determined by the following algorithm and the

blue lines are completed by Hungarian matching algorithm.

for( LCity in top locations of the G-User ){

for( RCity in all locations of a candidate ){

if( (#{photos of withFace in LCity} ≤ #{photos of withFace in RCity}) and

(#{photos of withoutFace in LCity} ≤ #{photos of withoutFace in RCity}) ) {

Connect LCity with RCity with a red dash line.

}

}

}

In the above algorithm, the reason that the number of photos with faces in LCity should be less

than or equal to the number of photos with faces is that we should add as many dummy photos

as the original photos. As demonstrated in Figure 4.6, the photos situated in Lausanne can
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Figure 4.5 – Demonstration of matching problem: dating

only be matched with photos located in Kaohsiung. The photos of cities other than Kaohsiung

fail to generate twenty six photos with faces and thirty four photos without faces. Hence, there

is a red dash line only when the criteria is met. We call this method, strict matching. There

is another method which we call loose matching in which a red dash line is presented when

the following criteria is met, (#{photos of withFace in LCity} ≤ #{photos of withFace in RCity} -

2) and (#{photos of withoutFace in LCity} ≤ #{photos of withoutFace in RCity} - 2). The strict

matching guarantees the number of dummy photos is the same the number of real photos.

However, the loose matching is more time-saving in finding a matching. While implementing

Hungarian matching algorithm, we adopt the loose matching.

Since Hungarian matching algorithm deals with cost matrix, in implementation the red dash

lines are replaced with small positive value, for example 1, while the rests are filled with a big

value, for example 100. If a candidate does not have a matching with the G-User, repeat the

algorithm with another candidate until a matching is found. Sometimes all of the candidates

do match with the G-User in the chosen city, then go back to 4.2 and follow the flowchart in

Figure 4.1 again.

4.8 Uploading dummy photos to the Google Drive user

Up to this section, the doppelganger is found for the G-User and dummy photos could be

uploaded into the Google Drive of target G-User. As we present in 4.7, the strict matching

guarantees the number of photos owned by the doppelganger is larger than or equal to the

number of photos possessed by the G-User. The dummy photos are selected randomly out of
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Figure 4.6 – Visualization of our matching problem
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Figure 4.7 – Photo distributions after adding dummy photos with faces

Figure 4.8 – Photo distributions after adding dummy photos without faces

the corresponding matching pair. While in the loose matching, the dummy photos are selected

as many as possible if there are fewer than required. Let’s take Figure 4.6 as an example, the

dummy photos for city Geneva are chosen from the city Chiayi, where twenty out of twenty

two photos with faces and twenty eight out of thirty without faces.

The histograms right after adding the dummy photos are supposed to be like the one in

Figure 4.7 and Figure 4.8. And that is the insights third-party apps would get afterwards. In

fact, we could find more than one doppelgangers for the G-User and add more dummy photos.

For example, in Figure 4.9 and Figure 4.10, there are two doppelgangers instead of one.

The dummy photos are kept in a dummy folder such that the G-User would not be confused

by the dummy photos. There is one more thing that is required to be noticed. The location

may not be specified in metadata while downloading the photos. Flickr has a strict constraint

and privacy protection over photos, which allows users to set the license level and sharing of

metadata. Although cameras, smart photos and tablets could insert the coordinates of user’s

current location in Exif metadata, most users turn off the automatic positioning function. For-

tunately, most users would indicate the location where the photo was taken while uploading it

to flickr. Therefore, before adding dummy photos to google drive of the G-User, we have to

insert the API-provided metadata in Exif metadata manually once the coordinates were not
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Figure 4.9 – Photo distributions after adding dummy photos with faces from two doppel-
gangers

Figure 4.10 – Photo distributions after adding dummy photos without faces from two doppel-
gangers
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written in the Exif metadata field at the beginning.

4.8.1 Sharing dummy photos

After dummy photos are done uploading to Google Drive of the G-User, we share the dummy

photos with a random Google Drive user as the work in 3.2.6. Then, the process of adding

dummy photos is finished for one Google Drive user.
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5 Experimental Results

In this chapter, we present the experimental results in which three defined performance

metrics are applied to measure the performance.

5.1 Experimental setup

The experimental environment is based on Node.js[17] and MongoDB[16]. Besides, there are

some modules and api library are required. The following subsections will cover these tools.

5.1.1 Node.js

Node.js, developed by Ryan Dahl, is a back-end platform implemented in Javascript. The

advantages of Node.js are efficiency and lightweight because of an event-driven and non-

blocking I/O model. Moreover, Javascript developers do not need to learn another back-end

languages to build servers. In a general way, Javscript alone could deal with front-end and

back-end developments. When it comes to installing and managing packages, npm[18] is the

perfect tool.

5.1.2 MongoDB

Database is an indispensable part in a server. MongoDB[16] is a NoSQL structure and is com-

patible with Node.js. This is an easy choice of database while the server side is implemented

in Node.js.

5.1.3 Some important packages

In addition to Node.js and MongoDB, there are some packages which are needed to be installed.

The most important among them are async, google api, and flickr api.

Although Node.js is launched in an asynchronous way, we sometimes demand the code to be
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executed synchronously. And async[11] guarantees a serial execution.

Since we need to add dummy files in google drive for users, google drive api [14] is required.

In order to query photos, flickr api[7] is definitely needed as well.

Before using google drive api and flickr api, we have to register firstly and then obtain the

unique id, key and secret.

5.2 Performance metric

To measure the performance of our method, we define three performance metrics. One is

to indicate the percentage of dummy files third-party apps could get in the top taxonomies,

locations or faces and another is to mention the fraction of dummy taxonomies, locations

or faces in the top five and the other is to measure the shift of ranking of top faces and top

locations.

We could formulate the first metric, dummy ratio (DR), with the following formula,

DR = #(dummy f i l es)

#(tot al f i l es)
(5.1)

This performance metric is to measure the probability of fetching a dummy file while third-

party apps start to profile the user. We could use DR on the example files in Chapter 3 and get

the results in Table 5.1.

Table 5.1 – Performance Matrix : DR

Files DR

Texts in Figure 3.6 58+32+26+17+11+6
2∗(58+32+26+17+11+6) = 50%

Photos with faces in Figure 4.7 26+20+18+2+6
2∗(26+20+18+2+6) = 50%

Photos without faces in Figure 4.8 34+28+22+24+6
2∗(34+28+22+24+6) = 50%

In Figure 3.6, Figure 4.7 and Figure 4.8, it is obvious that DR = 50% since we added the same

number of dummy files as the real files.

The second performance metric, dummy fraction (DF), is expressed as follows,

DF = #(dummy t axonomi es)

#(top t axonomi es)
(5.2)
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5.2. Performance metric

Let’s take Figure 3.6 as an example, DF is equal to 0.4. Since taxonomy ’Family’ and taxonomy

’Hobbies’ have the same number of texts. DF could be equal to 0.6 if taxonomy ’Hobbies’ is

ranked at five instead of six. Equation 5.2 is used to analyze texts rather than images. The

reason is that one dummy text is likely to have more than one and real taxonomy while images

are not.

The third performance metric, normalized ranking shift (NRS), is defined in the following

equation,

N RS( f ) = r anki ngpost ( f )−2∗ r anki ngpr i or ( f ) (5.3)

where f represents one of the top taxonomies, locations, or faces. While r anki ngpr i or ()

refers to the ranking before dummy files are added and r anki ngpost () denotes the ranking

after dummy files are added. NRS tells us to what extent the top locations, or faces degrade

in the ranking after dummy files are added. Let’s take Figure 4.7 as an example. Table 5.2

demonstrates the prior ranking and pose ranking of each locations in Figure 4.7.

Table 5.2 – Prior and post ranking of locations in Figure 4.7

Locations Prior ranking Post ranking

Lausanne 1 1

Geneva 2 3

Bern 3 5

Zurich 4 7

Basel 5 9

By using Equation 5.3, N RS could be obtained in Table 5.3.

Table 5.3 – NRS of top locations in Figure 4.7

Locations NRS

Lausanne 1 - 2 * 1 = -1

Geneva 3 - 2 * 2 = -1

Bern 5 - 2 * 3 = -1

Zurich 7 - 2 * 4 = -1

Basel 9 - 2 * 5 = -1

The bigger NRS is, the better obfuscation we get. If one top item has NRS which is lower than

−1, then the top topic does not change its ranking. Therefore, NRS is a brilliant indication of

shift of ranking for every top topic. In addition to NRS of individual location or face, we could
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calculate the average NRS (avgNRS) which is expressed in Equation 5.4

av g N RS =
∑F

f =1 N RS( f )

F
(5.4)

In Equation 5.4, F denotes the number of top locations or faces we concern. From Table 5.3,

the avgNRS is therefore −1.

5.3 Results

Mr. Hamza Harkous constructed a website [20] for users to realize the condition of possible

leakages of their privacies. Every user could access the service by validating the permission

requests which include accessing and managing their Google drive. And now we have over

one thousand registered users. The following experiments will test over twenty users who have

the most amounts of texts or photos. The top twenty users for adding dummy texts may not

be the same as the users for adding dummy photos.

5.3.1 Text part

According to subsection 2.2.1.1, a text has three types of information, entities, concepts, and

taxonomies. Therefore, we analyze the three different types of all the dummy texts. Figure 5.1

is the visualization of the performance metric, dummy ratio (DR). The situation that at least

50% of the texts in the top five entities are dummy texts are happened in fourteen out of twenty

users. While Figure 5.2 is associated with the performance metric, dummy fraction (DF). And

there are only four out of twenty users whose text files are added less than two dummy entities.

Hence, the proposed methodology guarantees a good obfuscation of entities.

Figure 5.3 is involved with top five concepts by performance metric DR. The fact that more than

half of the texts are dummy files are found in fourteen out of twenty users. Performance metric

DF along with top five concepts is plotted in Figure 5.4, which has the identical outcomes as

Figure 5.3. From these two figures, we know there is also a high obfuscation of concepts with

the proposed methodology.

Figure 5.5 and Figure 5.6, are visualizations of performance metric DR on top five taxonomies

and performance metric DF on top five taxonomies respectively. In these two figures, we find

out that over 60% are dummy texts in the top five taxonomies, but the fraction of dummy

taxonomies is either 0.2 or 0.4, which is lower than expectation. The situation implies some

dummy taxonomies have overlapped with the original top five taxonomies, even we manage

to exclude this situation in the process of generating dummy texts. The reason is that any text,

either real or dummy one, could have more than one taxonomy. Hence, the dummy texts not

only contribute to the number of dummy taxonomies but also to the number of original top

five taxonomies.
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5.3. Results

Figure 5.1 – Histogram of fraction of dummy texts in top five entities.

Figure 5.2 – Histogram of fraction of dummy entities in top five entities.

Figure 5.3 – Histogram of fraction of dummy texts in top five concepts.
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Figure 5.4 – Histogram of fraction of dummy concepts in top five concepts.

Figure 5.5 – Histogram of fraction of dummy texts in top five taxonomies.

Figure 5.6 – Histogram of fraction of dummy taxonomies in top five taxonomies.
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Figure 5.7 – Histogram of fraction of dummy photos in top five locations.

5.3.2 Image part

In the image part, we consider top five locations and top five faces if there are more than

five locations or faces respectively; otherwise, take as many locations and faces as the user

has. First, we present the outcome of top five locations. Figure 5.7 shows the performance

metric DR on top five locations, Figure 5.8 refers to the performance metric DF on top five

locations, Figure 5.9 denotes the number of NRS while Figure 5.10 is the histogram of average

NRS. As we can see in these four figures, most NRSs are distributed between −1 and 1, which

meets our expectation. And the fraction of dummy photos are more likely to be between 0.4

and 0.6 which is close to the theoretical value as well, 0.5 and most of the fraction of dummy

locations are between 0.4 and 0.6. However, in Figure 5.7, there are two users who have zero

dummy photo in the top five locations, which correspond to two outliers, 4 and 5, in Figure

5.10. The reason is that these two users whose photos were all taken in one location. Moreover,

in Figure 5.9, the explanation for the situation that NRS occurs once at −2 and twice at −3

is the adoption of loose Hungarian matching. In the loose Hungarian matching, photos of

dummy locations are added fewer than the photos of real locations, which might result in the

lower ranking of a dummy location if the number of photos of real locations are very close.

Overall speaking, the methodology matches the theory as well as successfully obfuscates the

top locations.

Then we discuss the top faces. Figure 5.11 presents the distribution of fraction of dummy

photos in the top five faces, Figure 5.12 shows the histogram of fraction of dummy faces

in the top five faces, Figure 5.13 denotes the histogram of NRS, and Figure 5.14 depicts the

distribution of fraction of average NRS in the top five faces. As we could observe in the four

figures, NRS is distributed rather dispersedly and there are more outliers while comparing

with figures of top locations. The reason is that the dummy photos are generated according to

the constructed photo distributions which are location-oriented. Although, google drive users

have a thorough face distributions in our database, flickr users are not likely to tag faces on the

photos and flickr does not provide api related to faces. Hence, so far the methodology does

not guarantee the obfuscation of top faces are as effective as that of top locations. Despite of
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Figure 5.8 – Histogram of fraction of dummy locations in top five locations.

Figure 5.9 – Histogram of NRS in top five locations.

Figure 5.10 – Histogram of average NRS in top five locations.
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Figure 5.11 – Histogram of fraction of dummy photos in top five faces.

Figure 5.12 – Histogram of fraction of dummy faces in top five faces.

the disadvantage the proposed methodology might have, there are more than half of the users

whose top faces are still obfuscated with dummy faces. Therefore, the proposed methodology

proves to be an excellent method for obfuscating top locations and a little bit weak approach

in obfuscation of top faces when comparing with the effect of obfuscation of top locations.
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Figure 5.13 – Histogram of NRS in top five faces.

Figure 5.14 – Histogram of average NRS in top five faces.
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6 Conclusions and Future Works

6.1 Conclusions

The realization of Moore’s law, the powerful computing powers of portable electronic devices,

the growing bandwidth of Internet and the increasing demands for convenient applications

contribute to everyone’s daily life in the digital era. As the technology advances in an unprece-

dented speed, people enjoy the convenience as well as worry about the leakage of personal

privacy. Among all kinds of possible means of leaking personal privacy, third-party apps are

the most dangerous entities that people should be aware of not only because of the easiness

of installing and usage but also the binding of online personal accounts and these apps.

While people appreciate the amazing services third-party apps provide, their privacies are

more or less open to the apps. Therefore, leakages of privacy are frequently and secretly taken

place via the way that third-party apps analyze users’ information to get insights of the victims.

In this thesis, an effective methodology is proposed to obfuscate information by adding

dummy texts and photos such that third-party apps would have troubles profiling their con-

sumers. In the work of dummy texts, by taking advantage of bigram Markov chain model we

generate dummy texts with taxonomies which are not covered in the lists of taxonomies in

the user’s original texts. While adding dummy photos, we construct a photo distributions

of the user and search for the doppelganger in flickr website who has the identical photo

distributions as the user. Afterwards, these dummy files would be shared with certain users

for the purpose of diversity and more obfuscations of insights about top collaborators and

shared interests.

From the experimental results presenting in Chapter 4, the methodology successfully served

to obfuscate users’ information according to three performance metrics, dummy ratio (DR),

dummy fraction (DF) and normalized ranking shift (NRS), which are measurements of percent-

age of dummy files in the whole documents, fraction of dummy types and shift of ranking. The

methodology shows a great obfuscation for top entities and concepts while a not bad obfusca-

tion for top taxonomies. Since dummy texts come in more than one dummy taxonomy which

may overlap with the real top taxonomies and result in less effective obfuscation as those in

entities and concepts. However, the approach still guarantees a highly effective obfuscation in
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texts. When it comes to images, the experimental results demonstrate a wonderful fulfillment

of obfuscation in top locations and top faces. Although most flickr users are reluctant to tag

faces on the photos along with the challenges that flickr does not provide face-related api,

which leads us to develop an location-oriented algorithm and results in few outliers in the

outcomes of obfuscation in top faces, the methodology successfully assists users in stopping

third-party apps from getting insights of photos.

In a conclusion, third-party apps never stop profiling users and could get their insights which,

however, are largely obfuscated by the proposed method. Although users might want to

maximize the effect of obfuscation by adding more dummy files. Considering the execution

time and the storage space in google drive a user could have, at the present stage we stick

to the current methodology. There are some future works that need to be solved and will be

discussed in the next section.

6.2 Future work

Despite of the success the current methodology has, some improvements and extra functional-

ity are required in the future. Firstly, the obfuscation of top taxonomies may be compromised

by the fact that a dummy text has more than more dummy taxonomy which is likely to con-

tribute to the real top taxonomies. To avoid this problem, the source corpus must not be

identified with one taxonomy but the all taxonomies it contains. Then the dummy texts are

generated only via the source corpus which is perfectly matched by the dummy text distribu-

tions.

Secondly, to improve the the obfuscation of top faces to the same degree as top locations, the

implementation of choosing the flickr photos which were taken during the same period of

time might be helpful. Since we can not force flickr users to tage faces nor demand flickr api

developing team to release a face api, the idea that repetitive faces are likely to be appeared in

photos during a certain time period.

We would like to develop an extension for google drive file browser. With the extension, all the

dummy files would be overshadowed or invisible to the users. This idea not only improve the

experience of user usability but also maintains a clean and original file browser for users.

Finally, there is a future challenge that we could confront. That is the threat of peer-to-peer

attack. We have to come up with some solutions to tackle this threat.
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