R 2o i A
TS
oL o
i RN P i3 = AP ol 1|

Process Control in Streaming Server

¢ oE s g 4L

A Thesis
Submitted to Department of Communication Engineering
College of Electrical and Computer Engineering
National.‘Chiao Tung University
in Partial Fulfillment of the-Requirements
for ithe Degree of
Master. of Science
in
Communication Engineering

August 2007

Hsinchu, Taiwan, Republic of China

PERARA4 LA E N

Bom T L oende B

Fyio HAEm R Ry e #4

R~ 87 E1m8 smisr

PR RIREAORA LR F 0 B RE

i

Je T

)

Zoite BE 304K T g MEZ e 77 socket B E
HMEBE 2 SE - B R PIREET £ T A
B R DR R e Al At ek A (s NN I A3

§BiE o ML hE BAYE T i 4 3

-

A A B R E FROBEEIFEFE PR E 2

HARR o - Lk P IRFIRET A 5 FA2 0 %2 H (747 %
oA BEHEEARIBERLY P & LE 7w

o3
i
St
=
_ﬁ‘.
A
)
)
o
o
>
i
.Fq'\
-k
W
A
ETIRN
[t
¥
S
=)
P}
9
iy

l}L‘,’]"*\;{T\U?’L’l -?K%_S’.;Ei—ﬁr"% E;{E@;mgmLf—;[;,
ERAL DR RN G L hE R Ik i
dd o Hwmingig o £ By E 2B Hit iz o 97 o

Process Control in Streaming Server

Student : Cheng - Siang Chiu Advisor : Dr. Wen — Thong Chang

Department of Communication Engineering

National Chiao Tung University

Abstract

Streaming systems consist of three big jobs which
include connection setup; filé::processing, and packets
sending. Connection :setup -consists of the socket setup
and the state mechanism-which i1s used to exchange
signaling; file processimg contains-the file formats’ parser
and the packetizer; packets sending focuses on the timing

control mechanism.

In this work, we investigate how streaming servers
are constructed in a single process’s view. Generally
speaking, streaming servers can be categorized into two
structures which are multi process structure and single
process structure. Although the differences in the
performance of the two structures are not obvious, the
detail implementations of single process are more
complicated in timing control since the coding problems

of the file formats.

Besides, we also try to modify an open source

streaming server so that it can connect to commercial

streaming servers by RTSP signaling.

R

Rotw > i $aie R i W1 animg

T

B 7
%ﬁ'[@téﬁ > :?s’(%f\" LI ;ﬁ’ﬂ‘é& T & oy s g ﬁ_‘?,‘l’?ﬁi«frf\‘. i #E
CEREEY 3 PR R IR

HrE BT & g BB OE B RS ERE S B AR KR

W
_-E—»\\
<
—t
T
=
o
)
3

T MU EROF R ER

s,
Ry
i-P
i
B
ok

- REFHMOFL I BTEL S REL R F

N

S ETE s Em s NS T ENE F L B

ik
\\':

NP

FE 2P L gk R MR B S g A
R FER AR AP BRI o R A2 2 s 5

CUNELS S FECE IR EF RN B R P

B o
&ﬂ,%j_tajﬁﬁﬁii,ﬁa\ﬁ@‘ﬁﬁ\i

FooBA MR ET S A R - A2l A F Fr X gpF ko

Bfs s R RA o FF SWBEEES S A ER

At5

Cengk B 2 L3 BEPHIE P

Acknowledgement
[would like to express my gratitude to my
academic and research advisor Dr. Wen-Thong Chang for
his guidance and constant support in helping my conduct
and complete this work. I would also like to thank my
colleagues 1n Wireless Multimedia Communication
Laboratory for their active participation 1in this

research.

I owe my sincére appreciation tomy families and
relatives who have supported and eéncouraged my over the
years. Most important of all, [want to extend my
profound appreciation to my beloved parents and
families, for their love, affection, and invaluable

support during my life and studies.

Table of Contents

B B s I
A B S T R A C T ettt e e e e e aaeaaaens 1
B SRR v
ACKNOW L LED GEMENT .ottt ettt e e e e e e \Y
TABLE OF CONTEN TS oooiiiiiiiiiiitiittetieeettesteetteerieerreer e ..—————————————————————————————————a——a——a——. VI
LIST OF FIGURES ... ottt ettt ettt ettt e e e e VI
[ST IO] S 1N = I R IX
(O o 7N o B = = S A 1
1.1 BACKGROUND ..ottt ettt ettt e e e e s it e e e e e e e e s st b re e e e e e et saabbbbeeeeesssasbbsreeeeeessassneres 1
1.2 AV o T V27N 0 1 N 4
1.3 RESEARCH GOALS oottt ettt e e et te e e s bt e e e s sab e e s abae e e sbeneessrbeeeeas 4
1.4 THESIS OQUTLINES oot e i ittt et e e 5
(O o N o I o U P o e 6
2.1 THE REAL-TIME TRANSPORT PROTOCOLcoooeieveiieeeee et 6
2.1.1 RTP e g B ... s 7
2.1.2 RTCP e EE Sl e s 9
2.1.3 [0 IS =t £ 7 ¢ = 3 + B oA 10

2.2 INTRODUCTION TO FFESERVER oottt ettt ettt tes e svana e envee e 16
2.3 MODIFICATIONS IN FFSERVER ..ottt 20
(O o 7N o I = = S T 25
SYSTEM ARCHITECTURE AND FLOWCHART OF ... 25
3.1 SYSTEM ARCHITECTURE OF A STREAMING SERVER ..ccocveevviiie e 25
3.1.1 SOCKET SETUP (Code Segment A) IN e 29

A STrEaAMING SEIVET ittt st sre e eneeeenes 29
3.1.2 LABELING (Code Segment B) In A Streaming Server ..32
3.1.3 SELECT (Code Segment C) In A Streaming.......ceceevvvverennens 35

Y= V= 35
3.1.4 HANDLING (Code Segment D) In FFserverccceeeveenenn. 43
3.1.5 ACCEPT (Code Segment E) In FFserver ... 47
3.1.6 Overall Procedures IN FFESErVEr . 49

3.2 RTSP METHODS IMPLEMENTED IN FFSERVER .ccooooiiiiieeee e 52
3.2.1 RTSP_CMD_OPTIONS() oottt 52

Vi

3.2.2 RTSP_CMD_DESCRIBE() cciiimeeeeeeeesimmsemeesseeeessesssesssseesessssssesseseees 53

3.2.3 RTSP_CMD_SETUP() cioooorooeeeeccemieeeeeeeeeeeeseesssseesseseeseessseessssesessssssesseseenes 56
3.2.4 RTSP_CMD_PLAY () cciittoeeeeeeeecoemmeeseeeeeeeeseeessseesseseeseessseessseesessssssesseseenes 58
CHAPTER 4 oot eeeee e ee s e s e s ae st es s e s s s st e s ee s e s ee s es e ees e ees e seeesens 61

4.1 RESULTS BEFORE AND AFTER THE MODIFICATIONS IN FFSERVER....61

4.2 PROCEDURE OF CODE SEGMENTS oottt ittt ettt eten s svree s etve e s ennven s snreeas 64
(O o AN o I = = S Y 66
L ot] A O s SRS 67

vii

Figure 2- 1
Figure 2- 2
Figure 2- 3
Figure 2- 4
Figure 2- 5
Figure 2- 6
Figure 3- 1
Figure 3- 2
Figure 3- 3
Figure 3- 4
Figure 3-5
Figure 3- 6
Figure 3-7
Figure 3- 8
Figure 3- 9
Figure 3- 10
Figure 3- 11
Figure 3- 12
Figure 3- 13
Figure 3- 14
Figure 3- 15
Figure 3- 16
Figure 3- 17
Figure 3- 18
Figure 3- 19
Figure 4- 1
Figure 4- 2
Figure 4- 3
Figure 4- 4

List of Figures

The main structure of FFMpPeg ..cccoovvvevvviecececee, 18
Results of connection to FFSErver ..o 19
Code segment 1 needs to be modified...........ccovvrivervennnne. 21
Code segment 2 needs to be modified...........ccevevvervennnne. 21
Code segment 3 needs to be modified...........cccevevvervennnne. 23
Code segment 4 needs to be modified...........cccevevvernennnne. 23
System Architecture of FFSErVer.........cccocvvvevieiiesiveseeeene 25
Pseudo Codes of http_server() in FFServer..........cccccccevuvene.. 26
Components of SOCKET SETUPc.ccccvvveveviieneeie s 31
Flowchart of Code Segment B..........cccccovevviieiieiesieieenns 34
Four macros of fd_set datatype.........cccevevveveiieinciciienns 38
Example of how fd_set is constructedc.cccceevvvvervennnns 38
Pseudo Codes of Code Segment C.........ccceeveveiieivereennenns 41
Flowchart of Code Segment C.........cccevvvevviieieececicceens 42
Flowchart of CoderSegment D..........cccoovvevveevieiesieceenns 45
Pseudo Codes of Code Segment D.........cccccvevevveieeieieennns 46
Pseudo-Codes of 1tps_parse request()ccccevvvererivereenenn 46
Flowchart of Code SegmentEccccovvevvveieecc e, 48
Pseudo-Codes of rtSp-emd_0ptions().....cccccvevvrvereerverieennnns 53
Pseudo Codes. of rtsp_emd_describe().......cccocvvvverveivenivennns 54
Pseudo Codes of prepare_sdp_description().........cccceevennens 54
Pseudo Codes of rtsp_cmd_Setup()cecvvervrrveervereniveneennnns 56
Pseudo Codes of rtsp_cmd_play()ccccovevvvverveienieiiennnns 58
PTS : the pictures’ display orderc.cccocvevvviveieeieiiiennnns 60
DTS : the pictures’ coding Orderccccevvevevveseeiesiennnns 60
Old ffserver’s packets captured by Ethereal 61
Packets after first modifications............ccocvveviiieniinninnnn, 62
All modifications are completedcccovevieiiveieiiesinennns 63
Procedure of code SEgMENtS........cccevvviieervereerie e 64

viii

List of Tables

Table 2-1 Overview of RTSP methods, their direction, and what
objects they operate ON.cccccevveieiieie e 15
Table 3-1 Payload Types Constructed In FFserver...........ccccccveveene.. 55

CHAPTER 1

INTRODUCTION

1.1 Background

With the rising capacity of bandwidth and the
increasing processing speed of CPUs, we can transmit
more multimedia audio/video data, not just texts or
pictures over the internet. Therefore, the applications of
multimedia have played an unreplaceable role in our daily
life. However, even .swith the. current capacity of
bandwidth, usually 10Mbps downloading speed, it is still a
time-consuming job to download a movie that is one and
half an hour long, 1GB"in.size, when users want to see
movies online. Because it costs at least 15 to 20 minutes to
download the whole movie if the network is not congested,
and users usually can not stand waiting so much long time.
Users may lose their interests over watching movie when
the network is congested or the movie is not the one they

want to see after the movie is downloaded.

To overcome this problem, the new technology
called streaming has been developed. Instead of
transmitting the whole file, the content server will divide

the media file into tiny minipackets (usually around 1024
1

bytes), and transmit them to the users. The major
distinction between streaming and the traditional
downloading is that the former offers “play while
downloading” while the later only supports “play after
downloading.” With streaming users can watching movies

while downloading them.

There are three important protocols used in
streaming. They are The Real-Time Streaming Protocol
(RTSP), Real-Time Transport Protocol (RTP), and the
Real-Time Transport Control Protocol (RTCP). They were
specifically designed to:stream media over networks. The
latter two are built -on.'top of User Datagram Protocol
(UDP). RTP defines-a standardized packet format for
delivering audio and video over the internet. And the
other two counterparts, RTCP and RTSP, work with RTP
to make streaming systems more reliable. More details

about the three protocols are presented in Chapter 2.

UDP sends the media stream as s series of small
packets. This is simple and efficient; however, packets are
liable to be lost or corrupted in transit. Depending on the
protocol and the extent of the loss, the user may be able to
recover the data with error correction techniques, may
interpolate over the missing data, or may suffer a

dropout.

Transmission Control Protocol (TCP) guarantees
correct delivery of each bit in the media stream. However,
they accomplish this with a system of timeouts and retries,
which makes them more complex to implement. It also
means that when there is data loss on the network, the
media stream stalls while the protocol handlers detect the
loss and retransmit the missing data. Users can minimize

the effect of this by buffering data for display.

In any multimedia system, a powerful streaming
server is the key component to judge if the system is an
excellent competitor in the market. However, in the
modern market three.. mainstream streaming servers,
Media Services, RealSystem-and-Quick Time Server, could
not talk to each other by using RTSP. Each company does
not release its server’s source codes and roughly follow
the standards. That results in a circumstance that a player
could not connect to a rival streaming server. It is the
situation that confuses every consumer. Because it means
consumers have to use a set of multimedia systems
developed by a single company. So in this research we try
to modify an open source streaming server, FFserver, to
be able to stream multimedia data to another open source

player, VLC media player.

1.2

Motivations

The motivations of this work are as the following :

The open source FFserver can not support RTSP

signaling very well.

Timing control is one of the most critical issue in any

streaming system.

Single process streaming server is hard to construct.

1.3 Research Goals

The goals of this research are as follows:

Modifying a streaming server so that it could stream

multimedia data by RTSP.

Figuring out which parameters or syntax are necessary

in the RTSP.

Describing one feasible timing control algorithm

iImplemented in streaming servers.

1.4 Thesis Outlines

The organization of this thesis is as follows.
Firstly, a brief background of know-how and some code
modifications in FFserver are presented in Chapter 2.
Secondly, the structures and procedures of an open source
streaming server are covered in Chapter 3. In Chapter 4,
experimental results are the main topics. At last, research

conclusions and future works are depicted in Chapter 5.

CHAPTER 2
STREAMING TECHNOLOGIES
AND

FFSERVER’S INTRODUCTION

In this chapter, we present some import
technologies and FFserver’s introduction. We briefly
introduce The Real-Time Transport Protocol (RTP) [2],
The Real- Time Transport Control Protocol (RTCP) [2],
and The Real-Time Streaming.Protocol (RTSP) [3] firstly.
Then FFserver is the.following. discussions which cover

socket and some modifications in FEserver.

2.1 The Real-Time Transport Protocol

The Transmission Control Protocol (TCP) is one of
the core protocols in the internet protocol suite. Using
TCP, applications on networked hosts can create
connections to one another, over which they can exchange
streams of data using Stream Sockets. The protocol
guarantees reliable and in-order delivery of data from
sender to receiver. That means retransmissions of packets

are performed when packets are missed or timed out.

Consequently, TCP does not assure the timely delivery of

packets.

Despite the fact that the mechanisms of TCP are
necessary in many applications, such as World Wide Web,
e-mail and File Transfer Protocol, real-time transmissions
can not use it. Another protocol, The Datagram Protocol
(UDP), can solve the timely delivery problem. Since UDP
does not support retransmission, it provides a faster

transmission than TCP dose over congested networks.

The Real-Time Transport Protocol (RTP) has the
ability to compensate for the .missing functions of UDP.
And RTP is usually based-on-top of UDP; that is, RTP
packets are usually encapsulated in UDP packets. In the
following three sections, we describe the fundamental
concepts of RTP, The Real- Time Transport Control
Protocol (RTCP) and The Real-Time Streaming Protocol
(RTSP).

2.1.1 RTP

RTP defines a standardized packet format for
delivering audio and video over the internet. It was

developed by the Audio-Video Transport Working Group
7

of the IETF and first published in 1996 as RFC 1889 which
was made obsolete in 2003 by RFC 3550. RTP can carry
any data with real-time characteristics, such as interactive
audio and video. It goes along with the RTCP and it's built
on top of UDP. Applications using RTP are less sensitive
to packet loss, but typically very sensitive to delays, so

UDP is a better choice than TCP.

According to RFC 1889, RTP provides the

following services :

» Payload-type identification —ndication of what kind

of content is being carried.

» Sequencing numbering — PDU sequence numbering.

» Time stamping — allow synchronization and jitter

calculations.

» Delivery montering.

2.1.2 RTCP

The Real-Time Transport Control Protocol

(RTCP), defined in RFC 3550 [2], is a sister protocol of
RTP. RTCP provides out-of-band control information for
RTP in the delivery and packaging of multimedia data, but
does not transport any data itself. It is used periodically
to transmit control packets to participants in a streaming
multimedia session. The primary function of RTCP is to
provide feedback on the Quality of Service (QoS) being
provided by RTP.

RTCP gathers-statistics-on.a-media connection and
information such as bytes sent,-packets sent, lost packets,
jitter, feedback and round.trip-delay. An application may
use this information to increase the quality of service
perhaps by limiting flow, or maybe using a low
compression codec instead of a high compression codec.

RTCP is used for QoS reporting.

There are several type of RTCP packets: Sender
report packet, Receiver report packet, Source Description
RTCP Packet, Goodbye RTCP Packet and Application
Specific RTCP packets.

2.1.3 RTSP

The Real Time Streaming Protocol (RTSP),
developed by the IETF and created in 1998 as RFC 2326
[3], is a protocol for use in streaming media systems
which allows a client to remotely control a streaming
media server, issuing VCR-like commands such as "play”
and "pause", and allowing time-based access to files on a

server.

The protocol is similar in syntax and operation to
HTTP but RTSP adds new requests. A summary of
available RTSP methods' are listed {in Table 2.1. And the

followings are the brief introductions of each method.

» DESCRIBE
- The DESCRIBE method retrieves the description of
a presentation or media object identified by the
request URL from a server. It may use the Accept
header to specify the description formats that the
client understands. The server responds with a
description of the requested resource. The
DESCRIBE reply-response pair constitutes the

media initialization phase of RTSP.

10

» ANNOUNCE

The ANNOUNCE method serves two purposes :

I. When sent from client to server,
ANNOUNCE posts the description of a
presentation or media object identified by
the request URL to a server.

ii. When sent from server to client,
ANNOUNCE updates the session description

in real-time.

» GET_PARAMETER

The GET_PARAMETER request retrieves the value
of a parameter of.a presentation or stream specified
in the URI. The-content.of the reply and response is
left to the implementation."GET_PARAMETER with
no entity body may be used to test client or server

liveness (“ping™).

» OPTIONS

The OPTIONS method represents a request for
information about the communication options
available on the request/response chain identified
by the Request-URI. This method allows the client
to determine the options and/or requirements
associated with a resource, or the capabilities of a

server, without implying a resource action or
11

initiating a resource retrieval.

» PAUSE

The PAUSE request causes the stream delivery to be
interrupted (halted) temporarily. If the request URL
names a steam, only playback and recording of that
stream is halted. For example, for audio, this is
equivalent to muting. If the request URL names a
presentation or group of streams, delivery of all
currently active streams within the presentation or
group is halted. After resuming playback or
recording, synchronization:of the tracks MUST be
maintained. Any server resources are kept, though
servers MAY close.the-session and free resources
after being paused for the duration specified with
the timeout parameter of the Session header in the

SETUP message.

» PLAY

The PLAY method tells the server to start sending
data via the mechanism specified in SETUP. A client
MUST NOT issue a PLAY request until any
outstanding SETUP requests have been
acknowledged as successful. The PLAY request
positions the normal play time to the beginning of

the range specified and delivers stream data until
12

the end of the range is reached.

» RECORD

This method initiates recoding a range of media
data according to the presentation description. The
timestamp reflects start and end time. If no time
range is given, use the start or end time provided in
the presentation description. If the session has

already started, commence recording immediately.

> REDIRECT

A REDIRECT request informs the client that it must
connect to another server location. It contains the
mandatory headertlocation, Which indicated that
the client should rssue requests for that URL. It may
contain the parameter Range, which indicated when
the redirection takes effect. If the client wants to
continue to send or receive media for this URI, the
client MUST issue a TEARDOWN request for the
current session and a SETUP for the new session at

the designated host.

» SETUP

- The SETUP request for a URI specifies the transport

mechanism to be used for the streamed media. A client

can issue a SETUP request for a stream that is already

13

playing to change transport parameters, which a server

MAY allow. If it does not allow this, it MUST respond

with error “455 Method Not Valid In This State”. For

the benefit of any intervening firewalls, a client must

indicate the transport parameters even if it has no

influence over these parameters, for example, where

the server advertises a fixed multicast address.

» SET_PARAMETER

This method requests to set the value of a parameter

for a presentation or stream specified by the URI.

» TEARDOWN

The TEARDOWN request-stops the stream delivery
for the given URI; freeing the resources associated
with it. If the URI is the presentation URI for this
presentation, any RTSP session identified
associated with the session is no longer valid.
Unless all transport parameters are defined by the
session description, a SETUP request has to be

issued before the session can be played again.

14

method
DESCRIBE
ANNOUNCE
GET_PARAMETER
OPTIONS

PAUSE

PLAY
RECORD
REDIRECT
SETUP
SET_PARAMETER

TEARDOWN

direction

C->S
C->S
C->S
C->S
C->S
C->S
C->S
S->C
C->S
C->S
C->S

5->C
5->C
5->C

5->C

object

P.S
P.S
P.S
PSS
PS
PS5
PSS
P.S
S
P.S
PS5

requirement

recommended
optional
optional

required (S->C: optional)

recommended
required
optional
optional
required
optional

required

Table 2-1 Overview of RTSP methods, their.direction, and what objects they
operate on. Legend: P=presentation, S=stream, R=Responds to,
Sd=Send, Opt=Optional -Req= Required

15

2.2

Sou

Introduction to FFserver

FFserver is the streaming system of the open

rce software - FFmpeg [1]. We can download FFmpeg

from the website [1]. FFmpeg is a system that can record,

convert and stream audio and video. It includes five
components :
» ffmpeg is a command line tool to convert one file

format to another, and it could grab and encode in real

time from a TV card.

ffserver is an HTTP multimedia streaming server. It

can’t support RTSP connections-yet.

ffplayer is a media player.

libavcodec is a library containing all FFmpeg

audio/video encoders and decoders.

libavformat 1is a library containing parsers and

generators for all common audio/video formats.

16

Since the research is mainly focused on a
streaming system, we only discuss FFserver. Just as
mentioned above, FFserver is a streaming server that
could stream audio/video. But FFserver released on the
official website only supports HTTP connections.
Therefore, we try to modify FFserver such that it can
accept RTSP connections. And we discuss the

modifications in section 2.3.

As one of the five components of FFmpeg, FFserver
Is built under Linux. Hence, we choose to build and
modify FFserver under:Linux. In:.the following steps, we

show how to build and use FFserver:

I. Extract the downloaded FFmpeg into one folder.

Figure 2-1is the main architecture of FFmpeg.
il. Add the ip address and gateway of client in
/ffmpeg/doc/ffserver.conf in the form : ACL allow

140.113.13.245 140.113.13.254

Ii. Return to /ffmpeg folder and type make in the

command line.

17

iv. Type ./ffserver —f doc/ffserver.conf . Then FFserver is

ready to serve.

v. Open Internet Explorer (1E) and type
140.113.13.247:8090/stat.html . Figure 2-2 shows the

results after the connection is granted.

ffmpeg l

Iibposfproﬂ libavforma 'Iibavcodecl.‘ libavutil I'

' Iibswscalel' I I'
‘ ffServer' conf

ffmpeg ffplay

ffserver

Figure2-1 The main structure of FFmpeg

ABUED) 48] htpcr{140.113.13.247 BOG0/stat hitm]

FEServer Status

Available Streams

Path Served Format Bit rate Video Audio Feed
Conns bytes kbitsfs kbitsfs Codec kbitsfs Codec

test]l .mpg] 0 mpeg 96 64 mpeglvideo 32 mp2 feedl.ffm
test.asf 0 0 asf_stream 256 256 mampegd 0 feedl.ftm
file.asf 0 0 asf stream 33 0 mampegd 32 wmav2 ‘home/file ast
testl .mpg] 0 itp 3384 2000 mpegZvideo 384 mp2 fhomeftestl.mpg
stat.html 1 0 - - -
index.html 0 0 - - 3

Feed feedl.ffm

Stream type kbitsfs codec Parameters
0 audio 32 mpZ 1 channelis), 44100 Hz
1 wideo Bd mpeglvides 160x128, q=3-31, fps=2
2 wideo 256 msmpegd 352240, q=3-31, fps=15

Connection Status

MNumber of connections: 1/ 1000
Bandwidth in use: Ok / 1000k

File IP Proto State Target bits/sec Actual bits/sec Bytes transferred
1 stathtml|140.112.13.245 HTTP/L.1 HTTF_WAIT_REQUEST 0 0 0

Figure 2-2 Results of connection to FFserver

19

2.3 Modifications in FFserver

The released version of FFserver on the official web
site [1] is not complete in RTSP signaling. Therefore, we
can not connect to FFserver by using VLC as a client. So in
this section, we try to modify the RTSP signaling of
FFserver such that VLC is able to connect to FFserver by
RTSP connection. For later discussion’s convenience, we
dub the modified FFserver new FFserver and the

official-released FFserver old FFserver.

We use Wireshark, a packet analyzer, to analyze
the packets between old FFserver.and VLC. And we found
that there are four code sections need to be modified. The

followings are the modified segments.

I. In ffserver.c, delete the code segment from line 2745
to line 2750. And this segment is shown in Figure 2-3.
Since we do not capture video from live camera, but
from the file exits in the disk. We delete this code

segment.

20

for(stream=first_stream ; stream!=NULL ; stream=stream->next){
if(Istream->is_feed && stream->fmt == &rtp_muxer && Istrcmp(path,
stream->filename)){

goto found;

Figure 2- 3 Code segment 1 needs to be modified

Ii. In ffserver.c, add the code segment in line 2767. Figure
2-4 presents this .code_segment. According to RFC
2326 [3] and RFC 2068 [4], this header is required.
Content-Base is used torspecify the base URI for

resolving the relative ‘URLs within the entity.

url_fprintf(c->pb,"Content-Base:%s\r\n" url);

Figure 2-4 Code segment 2 needs to be modified

21

ii. In ffserver.c, modify the code segment in line 2712.
Figure 2-5 exhibits the code segment. If we do not
modify the value i as (i+1)%2, the PLAY reply would go
wrong. Because the test file in our work is a mpeg file,
and there are two streams, video and audio, in this
kind of file. After parsing the file, if we do not modify
this code segment, audio stream would go along with
the statement,” payload type=14 and streamid=0,”
and video stream would go along with the statement,”
payload type=32 and streamid=1,” in sdp. Payload
type which is 14 is MPA and 32 is MPV according to
Table 3-1 . Streamidiis used to:identify the stream. The
request and reply -between server and the client do not
go wrong. But the-contents-of PLAY method shown on
the server are not correct. It shows that audio stream
iIs streamid 1 and vido stream is streamid O. The
contents are not right because we declare streamid O
for audio stream and streamid 1 for video stream in
sdp. Therefore, we modify the contents in sdp as that,
streamid O for video stream and streamid 1 for audio
stream. And this time, the contents of PLAY method
shown on the server are correct, audio stream is

streamid 1 and video stream is stremid O.

22

url_fprintf(pb,"a=control:streamid=%d\n" (i+1)%2);

Figure 2-5 Code segment 3 needs to be modified

iv. In Utils.c, delete the code segment from line 2122 to
line 2125. And Figure 2-6 shows this code segment. If
we do not delete this code segment, we would get the

error message error non monotone timestamps
st->cur_dts >= pkt >=_pkt->dts st:st->index.” This
error message indicates that FFserver does not allow
two identical DTS: But if;we-delete this code segment,
FFserver would functionvery well; that is to say, the
statement that there are no two identical DTS is not

correct.

if(st->cur_dts && st->cur_dtsl=AV_NOPTS_VALUE && st->cur_dts >= pkt->dts){
av_log(NULL,AV_LOG_ERROR, "error non monotone timestamps
%"PRId64">=%"PRId64"st:%d\n" st->cur_dts pkt->dts,st->index);

return -1;

Figure 2- 6 Code segment 4 needs to be modified

23

After the four code segments are modified, VLC can

connect to FFserver by using RTSP signaling connection.

24

CHAPTER 3
SYSTEM ARCHITECTURE AND FLOWCHART OF

A STREAMING SERVER

In this chapter, we present the overall system

architecture and system flow chart of a streaming server.

3.1 System Architecture of A Streaming Server

Based on the functionalities a streaming server
should have, we divide.the system -architecture into five
segments in this work..And-Figure 3-1 is the system
architecture of a streaming.server. Each segment consists
of many actions and we would introduce each segment in

the following sections.

C SOCKET SETUP)
(seiect D)
C HANDLITNG)
(ACCEPT)

I

Figure 3-1 System Architecture of Streaming Server
25

http_server(){

poll_entry->events=POLLIN;
while-(){
switch(){

case RTSPSTATE_SEND_PACKET:
case RTSPSTATE_SEND_REPLY:

events=POLLOUT;

case RTSPSTATE_WAIT_REQUEST;
events=POLLIN;

|
I
I
I
I
I
I
I
I
|
|
break: I code segment B

1
|
|
|
|
break; |
|

|

i

!

code segment C

code segment D

code segment E

Figure 3-2 Pseudo Codes of http_server()
26

We discuss the single process streaming server. A
single process means that only one process or thread is
created and the system flow is sequential, and no context
switch happens. Single process servers need to have an
infinity loop which makes sure the server would always
operate. And in Figure 3-2, we would see that there is an
infinity loop indeed. Figure 3-2 is the pseudo codes of

http_server().

A streaming server has to check if there are new
connections or new requests and to send the data to the
clients. Firstly, a streaming server labels each connection
a state which the connection is.going to look for. The state
may be a ready-to-send-packet-state or a wait-for-service
state or a ready-to-send-reply.state and so on. Secondly,
according to the state just labeled, server gives each
connection different service, like parsing requests or
sending packets. After the server completes the service of
one client, the server goes on serving the other clients
which are accepted and wait in the waiting list. If no other
connections wait in the waiting list, the server then would
check if there are new connections or new requests. And
once a new connection is accepted, the server would label
the connection state and go to serve the connection. The
server repeats the four stages, state-labeling

service-giving, connection-checking, and
27

connection-accepting, until the server shuts down.

In Figure 3-2, we divide the overall system
architecture into five code segments. The five code
segments cooperate to achieve the three stages talked in
the previous paragraph. For example, code segment B and
code segment C are in charge of labeling states and
checking connections, code segment D accounts for
sending packets to the clients and parsing the requests
from the clients, and code segment E is responsible for
accepting new connections. Next we would introduce the

five code segments which are under http_server().

The followings-are.the five code segments in Figure
3-2. And we refer SOCKET SETUP to code segment A,
LABELING to code segment B, SELECT to code segment C,
HANDLING to code segment D, and ACCEPT to code

segment E.

28

3.1.1 SOCKET SETUP (Code Segment A) In

A Streaming Server

Socket setup is the first step for every network
programming. Hence, socket setup is also the first part in
the streaming server’s architecture. In Figure3-3, we show
the detail components of the first part, SOCKET SETUP.
There are a few important components in the SOCKET

SETUP. They are :

» socket ()

- The socket function is to e¢reate a socket. And the
returned value-of socket().i1s a socket descriptor
which is very similar-to-a. file descriptor. Just like
we use open() to create.a file descriptor and access
the files in the disk. We use socket() to create a

socket ,and we call this socket a listening socket.

» bind()
- The bind function is to associate a socket with a

network address.

» connect()
- The connect function is to connect a socket to a

remote network address.

29

> listen()
- The listen function is to wait for incoming

connection attempts.

» accept()

- The accept function is to accept incoming
connection attempts. After the accept function is
returned , a socket descriptor is given. This socket
descriptor is called a connected socket descriptor
and not a listening socket descriptor any more.
Although accept is not categorized in SOCKET
SETUP in this work, it 1s.still a very important

socket APl in network pregramming.

Because the streaming. server is a single process
and only one listening socket is needed. Hence this code
segment is not included in the infinity for loop. In this
code segment, we only do socket(), bind(), and listen(),
accept() is implemented in code segment E. Since code
segment E is mainly for accepting new connections.
Therefore, we do not implement accept() in this code
segment. If the listening socket is successfully created,
the process would go to the next code segment, code

segment B.

30

SOCKET SETUP

Figure 3-3 Components of SOCKET SETUP

31

3.1.2 LABELING (Code SegmentB) In A

Streaming Server

Because we have TCP sockets and UDP sockets in
the streaming server, server has to give different sockets
different events. And TCP sockets may transit its state
between read or write state, we have to implement a state
machine so that server can handle different states of TCP

sockets.

In Figure 3-4, we show the flowchart of code
segment B in more .details. We could see that the
streaming server would.check-all socket descriptors and
assign each socket descriptor-an events. But the listening
socket descriptor is always assigned a POLLIN events in
this code segment. Moreover listening socket descriptor
does not have state, FFserver would go to the default case,
do nothing, leave the switch multi-selection structure and
go to check another socket descriptors. The variable
events means that the action the socket descriptors is
going to look for. For example, if a connected client is
labeled a RTSPSTATE WAIT_REQUEST state, then the
connected client is going to look for a POLLIN event. And
if a connected client IS labeled a
RTSPSTATE_SEND_PACKET sate or a

RTSPSTATE _SEND_ REPLY state, then the connected
32

client will take care of a POLLOUT event. In any server, a
connected client is a connection request by a client and
the connection is accepted by the server. Once a
connection is accepted, then the server would give this
connection of the client a connected socket descriptor.
That is, from then on, the connected socket descriptor
represents the connection of the client. So the server
could send or read data from the client by using the
corresponding connected socket descriptor; that is, to
send data to or read data from the connected socket
descriptors is equivalent to send data to or read data from
the connected clients. /A more ‘detail information about
socket descriptors are. discussed-in section 3.3.1. A
POLLIN event indicates that the connected socket
descriptor is ready to read data from the connected client;
a POLLOUT event means that the connected socket

descriptor is going to send data from server to the client.

33

code segment

all socket descriptors
are checked ?

RTSPSTATE_WALT_REQUEST>—> events=POLLIN break

code segment
B

RTSPSTATE_SEND_PACK

RTSPSTATE_SEND_REPL!
?

‘!'N

events=POLLOUT] break

default break

code segment
c

code segment
D

code segment

E

Figure 3-4 Flowchart of Code Segment B
34

3.1.3 SELECT (Code Segment C) In A Streaming

Server

Once each connected socket descriptor is given a
events, we then need to check if the connected socket
descriptor has responses and which state the connected

socket descriptor belongs to.

This code segment is mainly to use select to notify
kernel that there are new connections. Before we go on the
discussion of this code segment, select should be

introduced firstly.

The select function allows the process to instruct
the kernel to wait for any one of multiple events to occur
and to wake up the process only when one or more of
these events occurs or when a specified amount of time
has passed. As an example, we can call select and tell the

kernel to return only when

» any of the socket descriptors {3,9} are ready for
reading, or

» any of the socket descriptors {4,6} are ready for
writing, or

» any of the socket descriptors {5,7} have an exception
35

condition pending, or
» after 10 seconds have elapsed,
where 3, 9, 4, 6, 5, and 7 in this work are socket

descriptors.

That is, FFserver tells the kernel what socket
descriptors FFserver is interested in (for reading, writing,
or an exception condition) and how long to wait. Besides
socket descriptors, any descriptor can be tested using

select.

The select function is ‘shown in the following

block.

int select (int maxfdl, fd set *readset, fd_set *writeset,

fd_set *exceptset, struct timeval *timeout) ;

There are five arguments maxfdl, readset, writeset,
exceptset, and timeout in the select. The functions of

these five arguments are explained as follow:

» maxfdl
- This argument specifies the number of socket

descriptors to be tested.

36

» readset
- This argument defines the socket descriptors that

we want the kernel to test for reading condition.

> writeset
- This argument designates the socket descriptors

that we want the kernel to test for writing condition.

» exceptset
- This argument mentions the socket descriptors that

we want the kernel to test for exception condition.

» timeout
- This argument tells the kernel how long to wait for
one of the specified socket descriptors to become

ready.

Now a design problem is how to specify one or
more descriptor values for each of these three arguments,
readset, writeset, and exceptset. Select uses descriptor
sets, typically an array of integers, with each bit in each
integer corresponding to a socket descriptor. For example,
using 32-bit integers, the first element of the array
corresponds to socket descriptors O through 31, the
second element of the array corresponds to descriptor 32

through 63, and so on. All the implementation details are
37

irrelevant to the application and are hidden in the fd_set
datatype and the following four macros shown in Figure

3-5:

void FD_ZERO(fd_set *fdset); /*clear all bits in fdset*/

void FD_SET(int fd, fd_set *fd_set); /*turn on the bit for fd in fdset*/
void FD_CLR(int fd, fd_set *fdset); /*turn of f the bit for fd in fdset*/
int FD_ISSET(int fd, fd_set *fdset), /*is the bit for fd on in fdset?*/

Figure 3-5 Four macros of fd_set datatype

We allocate a socket descriptor set of the fd_ set
datatype, we set and:test the bits tn the set using these
macros. For example,“to"define a variable of type fd_set
and then turn on the bits for socket descriptors 3 and9, we

write the sample codes presented in Figure 3-6.

fd_set rseft;

FD_ZERO(&rset);, /*initialize the set: all bits of f*/
FD_SET(3,&rset); /*turn on bit for fd 3*/
FD_SET(6,&rset); /*turn on bit for fd 6*/

Figure 3- 6 Example of how fd_set is constructed

38

Now we know more about select and fd_set, we
could go on our work. In this segment, we set the socket
descriptors into the corresponding fd_set. In Figure 3-7,
we show the pseudo codes of code segment C and the
flowchart of code segment C which is displayed in Figure
3-8. After entering this code segment, server firstly
examines the events of the connected socket descriptors,
then sets the connected socket descriptors into one of the
fd_sets. For example, if the events of the connected socket
descriptor is POLLIN, the discriminant “if (fds[i].events &
POLLIN)” would be true, then server turns on the connected
socket descriptor in theiread set..Otherwise, if the events
of the connected socket descriptor is POLLOUT, server
would turn on the connected-socket descriptor in the
write set. After the connected socket descriptors are set
in any one of the fd_sets, server calls select to help
inspect whether the connected socket descriptors are
ready to read or write. Once the select function is
returned, the server examines if the discriminant
“FD_ISSET(fds[i].events,&read _set)” is true, if it is true,
server assigns the revents of the connected socket
descriptor POLLIN. But if the discriminant
“FD_ISSET(fds[i].events,&write_set)” is true, server
appoints the revents of the connected socket descriptor
POLLOUT. select is returned in this system only when

new connections or RTSP methods that include
39

DESCRIBE, OPTIONS, SETUP, PLAY, PAUSE, and
TEARDOWN appear. FD_ISSET here copes with the
situation that which socket descriptors are caught by
select. This can help server to decide whom the data
should be send to or receive from. The revents is used to
show what events occurred and is an important variable in
code segment E, so we discussed this variable in code
segment E. After assigning the corresponding revents to
the connected socket descriptors, the next step is to enter

code segment D.

40

poll(
fd_set read_set;
fd_set write_seft;
fd_SeT. exception_set;
FD_ZERO(&read_set):
FD_ZERO(&write_set);
FD_ZERO(&exception_set);
if (fds[i].events & POLLIN)

FD_SET(fds[i].fd, &read_set):;

if (fds[i].events & POLLOUT)
FD_SET(fds[i].fd, &write_set);

if (fds[i].events & POLLERR)
FD_SET(fds[i].fd, &exception_set);

select():
if(FD_ISSET(fds[i].fd, &read_set))
fds[i].revents=POLLIN;

if(FD_ISSET(fds[i].fd, &write_set))
fds[i].revents=POLLOUT;

if(FD_ISSET(fds[i].fd, &exception_set))
fds[il.revents=POLLERR;

Figure 3-7 Pseudo Codes of Code Segment C

41

code segment
c

code segment
A

code segment

fds[i].events =

POLLIN ?

ly

FD_SET(fds[i].fd.&read_set)

fds[i].events =
POLLOUT ?

ly

FD_SET(fds[i).fd dwrite_set)

FD_SET(fds[i].fd,&exception_set)

select(A&read_set &write_set,
dexception_set,)

FD_ISSET(fd[i].events,
dread_set)

fds[i].revents = POLLIN

FD_ISSET(fd[i].events,
dwrite_set)

fds[i].revents = POLLOUT

fds[i].revents = POLLERR

code segment
D

code segment

E

Figure 3-8 Flowchart of Code Segment C

42

3.1.4 HANDLING (Code Segment D) In FFserver

After the connected socket descriptor is ready to
read or write, then server starts to process the connected

socket descriptor’s requests.

Figure 3-9 is the flowchart of code segment D and
Figure 3-10 is the pseudo code of this segment. Code
segment D is responsible for the handlings of the requests
of the connected socket descriptors, including parsing and
sending packets. Server firstly checks the events of the
connected socket descriptors. :If the events of the
connected socket descriptor IS
RTSPSTATE _SEND_PACKET, the server enters the action,
packets deliver. Packets..deliver consists of many
sub-functions which mainly includes packets_sending and
timing_calculating. Packets_sending is the action that
sends the packets to the connected socket descriptor.
Timing_calculating is mainly to calculate the PTS and
DTS of the packets and the sending time of each packet.
But the packets deliver is not going to talk about in this
work. Back to the switch case choices of the connected
socket descriptors, if the events of the connected socket
descriptor is RTSPSTATE_WAIT_REQUEST, the server
would call the sub-function, rtsp_parse_request(), shown

in Figure 3-11 . In function rtsp_parse_request(),server
43

parses the methods the connected socket descriptor
requests and does the corresponding functions. For
example, if the method the connected socket descriptor
requests is OPTIONS, the server would call the function ,
rtsp_cmd_options() and does the codes in the function to
fulfill the request of the connected socket descriptor.
Code segment D is implemented with a for loop. The loop
will repeat several times which are the number of the
connected socket descriptors. In each loop of code
segment D, if server is in a packets_deliver action, server
would delivery just one frame of the file the connected
socket descriptor requests and then finish this loop and go
to another loop if there are .more than two connected
socket descriptors ‘exist.—And /If server is in the
sub-function rtsp__parse: request(),server would parse the
RTSP method the connected socket descriptor requests
and leave this sub-function when no further method is
requested from the connected socket descriptor. In Figure
3-10, we can see that there is a recv() in case
RTSPSTATE WAIT_ REQUEST. Server parses the
connected socket descriptor’s requests which are buffered
in the buffer specified in the second argument in recv(). If
there is a new RTSP method arrives from the connected
socket descriptor, this method would be caught by select
in code segment C. Then server uses recv() to receive this

method, parses this method, and executes the
44

code segment
]

corresponding sub-function.

code segment
A
code segl
B
code segment
c
o 0 0 0 B e i e e e
I b
I P i //_“"_
| & case g // 3 = Bise o
\ /,/ ~ N - case \-\\\\ N > N
| \RTSPSTATE_SEND_PA?‘-—rf\RTSPSTA‘I’E_SEND_REPLY /—K@ST&TE_WAIT_REQUES return -1
I < 4 -~
\ \\“-, £ \\"‘x G g \%\ 2 / >
| \\/, b T by
I
| Y y ¥
I
I
1
I deliver packets send reply for(rtsp_parse_request)
I
}
I
I
I
: // \\‘
e .
I ,— emd = . Y ?
| i\ options 7 ::-—i rtsp_cmd_options() =—,
I P
1 “\ P
: N
I
I
| N
I
| //
: A s \\; rtsp_cmd_describe()
I S\ descirbe 7~ PR —
I " &
: A
i R,
I
1
: N
I
I P
I /// \\
| / emd = Y
: N setup ? />_l‘ risp_cmd_setup() ——3
I
; e R
I
' N
I
I
I P e
I ’// \\
! S emd= Y
I N B—r rtsp_cmd_play()
| \ play ? //’
I “
| \ \/
I
I
I
code segment
| E

Figure 3-9 Flowchart of Code Segment D
45

handle__connection(){

switch({

case RTSPSTATE_WATT_REQUEST:

r-ecv(t::—>1‘d cc->buffer__ptr,1,0);

rtsp__parse__request():

break:

case RTSPSTATE_SEND_PACKET:

s‘end_:dafa():

break:

case RTSPSTATE_SEMND_REPLY:

deliver reply:

c—>state = RTSPSTATE_WAILT_REQUEST:

¥ EETRN g
Figure 3-10 Pseudo (_3'_Q_d-es pf Code Segment D

rtsp__parse_request()X{
extract command from url
if(lstrcmp(emd,"DESCRIBE")X

rtsp__cmd__describe(c,url):

3

else if(Istrecmp(cemd,"OPTIONS")X

rtsp_cmd_options(c,url):

other four methods

c—>state = RTSPSTATE_SEND__REPLY:

Figure 3- 11 Pseudo Codes of rtps_parse_request()

46

In Figure 3-11, there are many RTSP methods
string comparisons. If the method the connected socket
descriptor requests is DESCRIBE, the following function
needs to be executed is rtsp_cmd_descirbe(). So do the

other methods.

3.1.5 ACCEPT (Code Segment E) In FFserver

Figure 3-12 is the flowchart of code segment E. In
this code segment, server decides whether to accept a new
connection. Server does not check the already connected
socket descriptors but.just checks: the listening socket
descriptor which is- put in—-the read set. If a new
connection connects to server,then select would know the
new connection in the read set. And a variable revents is
assigned to POLLIN. Variable revents indicates that the
event which just occurred. Using this variable revents
which is now POLLIN, server would enter the
sub-function, new_connection(), accept this new
connection, and give this new connection a new connected
socket descriptor. After code segment E completes the

work, server goes back to code segment B.

47

code segment
A

y

code segment
B

W

code segment
C

code segment
D

| |
l I
|
| revents = Y I
code segment | | POLLIN 2 I
E g I
: !
I |
| |
I N hew_connection() '
| |
| \
I \
\

Figure 3-12 Flowchart of Code Segment E

48

3.1.6 Overall Procedures In FFserver

After the five code segments are introduced in the
above sections, now let’'s go through the overall
procedures from code segment A to code segment E. We
start server by executing the executable file ffserver.c. The
process would be in the main function of ffserver.c. But
the main function of ffserver.c just does some
initializations. Therefore, we check the most important
sub-function, http_server(). In http_server(), the first
thing to do is to create a listening socket and this part is
shown in code segment A. After.the listening socket is
initialized, FFserver -enters the infinity loop. The first
code segment in the infinityloop Is code segment B. We
make the events of the Tistening socket descriptor always
POLLIN, as shown in Figure 3-2. Then at the beginning
because no connection is accepted by FFserver, FFserver
would pick the default case in the switch
multiple-selection structure, leave this switch structure,
and enter code segment C. In code segment C, we
encounter a switch multiple-selection structure. For the
reason that the events of the listening socket descriptor is
POLLIN, so FFserver puts this listening socket descriptor
in the read_set and calls select. Fortunately, a new
connection from a client connects to FFserver, then select

would return. select returns because the listening socket
49

descriptor in the read_set is set. Next, the revents of the
listening socket descriptor is assigned POLLIN.
Subsequently FFserver advances to code segment D.
Although a new connection is caught by select, and
FFserver moves to code segment D for handling the new
connections’ request. But this new connection has not
been accepted by FFserver and given a new connected
socket descriptor. So FFserver does nothing and goes to
code segment E. This time FFserver would give this new
connection a connected socket descriptor by calling accept.
Now the new connection has its own connected socket
descriptor and FFserver labels:.this connected socket

descriptor RTSPSTATE_WAIT -REQUEST.

Now we go through this procedure again , and call
this a second loop. This time the connected socket
descriptor has been existed and has a
RTSPSTATE_WAIT_REQUEST state. So in code segment
B, the events of this connected socket descriptor is
POLLIN. And in code segment C, this connected socket
descriptor is put into the read_set since it has a POLLIN
events. Subsequently, owing to the connected socket
descriptor has requests, select would return. The revetns
of this connected socket descriptor is assigned POLLIN.
Then FFserver enters code segment D. In code segment D,

FFserver parses the requests from the connected socket
50

descriptor and executes the corresponding sub-function,
like rtsp_cmd_options or rtsp_cmd_describe. When the
request of the connected socket descriptor is PLAY, the
state of this connected socket descriptor would be
changed to RTSPSTATE_SEND_PACKET in sub-function
rtsp_cmd_play. Subsequently, FFserver advances to code
segment E and goes back to code segment B immediately

since no new connection is caught by select.

Third loop begins with only one connected socket
descriptor which has been done RTSP signaling. The
procedure goes on as .the second loop does, but action
differs in code segment D. Now the state of the UDP
socket descriptor -ofwthe— connected socket s
RTSPSTAE_SEND_PACKET because the state has been
changed in rtsp_cmd_play (), FFserver would enter
packets deliver and start to send one frame of the file the
connected socket descriptor requested in the RTSP
signaling. After FFserver sends one frame according to the
DTS and PTS, FFserver leaves this segment and goes to

code segment E. Until now, we complete third loop.

If there is no new connection, in the fourth loop
FFserver would do the same things as those do in third
loop. If there is a new connection, then in the fourth loop

FFserver would serve the old connected socket descriptor,
51

catch this new connection by calling select, accept this
new connection by calling accept, and give this new
connection a different connected socket descriptor. Then
in the later loops, FFserver would take turns serving this

two connected socket descriptors.

3.2 RTSP Methods Implemented In FFserver

We now examine the pseudo codes of the four RTSP

methods which are implemented in FFserver.

3.2.1 RTSP_CMD “OPTIONS()

The beginning method requested by VLC is
OPTIONS, so we check the pseudo code of
rtsp_cmd_options() firstly. Figure 3-13 exhibits the
pseudo codes, and this function just edits the RTSP
OPTIONS replies. And a detail description about
OPTIONS is depicted in section 2.1.3 .

52

rtsp_cmd_options(X

url_fprintf(c->pb,"RTSP/1.0%d%s\r\n" RTSP_STATUS_OK,"OK");
url_fprintf(c->pb,"CSeq:%d\r\n" c->seq);

url_fprintf(c->pb,"Public:%s\r\n","OPTIONS DESCRIBE,SETUP, TEARDOWN PLAY PAUSE");

Figure 3- 13 Pseudo Codes of rtsp_cmd_options()

3.2.2 RTSP_CMD_DESCRIBE()

After the OPTIONS method is done, the second
method is DESCRIBE. Figure 3-14 s the pseudo codes of
rtsp_cmd_describe(); According RFC 2326, DESCRIBE
reply usually includessdp,andwe certainly see a function,
called prepare_sdp_description() which is responsible for
sdp preparations. Figure 3-15 is the pseudo codes of the
function, prepare_sdp_description(). Because DESCRIBE
reply should includes the codec type of the file the
connected socket descriptor requests, there should be a
part called parsing. In Figure 3-15, there is a sub-function
rtp_get payload type() which lets FFserver decide the
payload type of the file by checking the array listed in
Table 3-1.

53

rtsp_cmd_describe()
prepare_sdp_description();
url_fprintf(c->pb,"Content-Base: %s\r\n" url);
url_fprintf(c->pb,"Content-Type:application/sdp\r\n");

url_fprintf(c->pb,"Content-Length:%d\r\n" content_length);

Figure 3- 14 Pseudo Codes of rtsp_cmd__describe()

prepare_sdp_description(){

rtp_get_payload_type();

url_fprintf(pb,"v=0\n"):

url_fprintf(pb,"o=- 0 O IN IP4 %s\n",ipstr);
url_fprintf(pb,"s=%s\n" title)

url_fprintf(pb,"m=%s%d RTP/AVP %d\n" mediatype, port,payload_type);

url_fprintf(pb,"a=control:streamid=%d\n" (i+1)%2);

Figure 3- 15 Pseudo Codes of prepare_sdp_description()

54

encoding audio(a) clock
p'l' name vide.o(v) rate (E?_
(o] PCMU A 8000
1 reserved
2 reserved
3 GSM A 8000
4 G723 A 8000
5 DVI4 A 8000
6 DVI4 A 16000
> i LPC A 8000
8 PCMA A 8000
) G722 A 8000
10 L16 A 44100
11 L16 A 44100
12 QCELP A 8000
13 N A 8000
14 MPA A 90000
15 G728 A 8000
16 DVI4 A 11025
17 DVI4 A 22050
18 G729 A 8000
19 reserved A
20-23 unassignhed A
24 unassigned v
25 CelB AV 90000
26 JPEG \'4 90000
27 unassignhed v
28 AV \"4 90000
29-30 | unassigned 14
31 Hz61 v 90000
32 MPV \"4 90000
33 MP2T AV 90000
34 H263 A" 90000
35-71 | unassigned ?
72-76 | reserved for RTCP conflict avoidance
77-95 | unassigned ?
96-127 dynamic ?

channels

1

AV e T = ™ S S

[y

[

[=

Table 3-1 Payload Types Constructed In FFserver

55

3.2.3 RTSP_CMD_SETUP()

Clients receive the DESCRIBE reply and then send
the SETUP method. So we talk about the pseudo codes of

rtsp_cmd_setup() which is shown in Figure 3-16.

rtsp_cmd_setup(){

rtp_new_connection();

open_input_steam();

rtp_new_av_stream();

url_fprintf(c->pb,"Session: %s\r\n" rtp_c->session_id);
url_fprintf(c->pb," Transport:RTP/AVP/UDP;unicast;client_port="%d-%d;server_port=%d-%d",

th->client_port_min,th->client_port_min+1 port port+1);

}
Figure 3- 16 Pseudo Codes of rtsp_cmd__setup()
In Figure 3-16, there are three sub-functions,
rtp_new_connection(), open_input_stream() and
rtp_new_av_stream(). The followings are the

introductions to three sub-functions.

56

» rtp_new_connection()
- This sub-function does some SETUP method
messages initializations and is not as import as the

other two sub-functions.

» open_input_stream()
- From the name of the sub-function, we know it is
about the opening of the file stream. This
sub-function also tells the client from where the file

should play.

» rtp_new_av_sream()

This sub-function accounts for-the setup of the file steam

which is just opened by open_input. stream().

57

3.2.4 RTSP_CMD_PLAY()

The last method, PLAY method, shows its pseudo
codes in Figure 3-17. In Figure 3-17, a subfunction,
find_rtp_session_with_url(), sends the streams into their
sessions according to the mechanism specified in SETUP.
As we mentioned in the above discussion, the state of the
connection would change from
RTSPSTATE _WAIT_ _REQUEST to
RTSPSTATE _SEND_PACKET when FFserver gets a PLAY
request from the client. FFserver would create a UDP
socket which is responsible for sending RTP packets to the
connected socket descriptor.. And this UDP socket
descriptor is assigned a RTSPSTAE_ SEND_PACKET state
and a POLLOUT events.: The connected socket descriptor
remains a RTSPSTATE_WAIT_REQUEST state.

rtsp_cmd_play(){

find_rtp_session_with_url():

url_fprintf(c->pb,"Session: %s\r\n" rtp_c->session_id);

rtp_c->state = RTSPSTATE_SEND_PACKET:

Figure 3- 17 Pseudo Codes of rtsp_cmd__play()
58

If the state of the connected socket descriptor is
RTSP_STATE_SEND_PACKET, when to send the packets
Is an important issue. Here, we introduce two timestamps,
presentation timestamp (PTS), and decode timestamp

(DTS). We explain these two as follows:

» PTS
- The timestamp indicates that when the picture must
be presented or displayed.
> DTS
- The timestamp demonstrates when the picture must

be decoded.

After constructing these two timestamps, FFserver

can easily decide when to send the packets. We show PTS

and DTS in Figure 3-18 and Figure 3-19 respectively.

59

Forward Prediction

Bidirectional Prediction

I:B B P B B P B:B P B B I

Display Order (PTS) S AR 8 R Faad e

Figure 3- 18 res’ display order

—_— s — —— — —— — ——— —— — ——

CndmgOr'dgr-(DTS) I B BPF B8 B'PF BB B B

1 2 34 &5 6 7 8 85 10 11 12

Figure 3-19 DTS : the pictures’ coding order

60

CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we show some experimental results
which including pictures before and after the
modifications of RTSP in FFserver and timing of each

code segment.

4.1 Results before and after the modifications in

FFserver

OPTIONS Is OK
REPLY IS OK

140,113.13.97
140,113.13.97

140,113.13, 247
140,113.13. 247

304 2, 513984
305 2. 514227

DESCRIBE IS OK
REPLY IS NOT OK

Figure 4-1 Old ffserver’s packets captured by Ethereal

61

Figure 4-1is the packet of old FFserver captured by
Wireshark. We can see that there is an error happened in
the reply of the DESCRIBE method. After we did the first

two modifications specified in section2.3, the result is

shown in Figure 4-2.

5454 5 1446 [ACK] Seq
Re;ﬂy TSPIl 0 200 0K

TCR
RTSP

140,113,137
140.113.13.97

140,113.13. 247
140,113.13.47

0T, 846340
253 146583

295 1 849?92

140 113.13.97
13,2 140 113 13 9?
299 1 863366 140 113 13 24? 113

301 1 865309

TR T Rén1v; RTSP/L.0 200 0K

SETUP FOR SECOND
STREAM IS NOT OK

Figure 4- 2 Packets after first modifications

Although we had done the first two modifications,
there is still an error. In order to debug this error, we

spent a lot of time on it. Finally, we did the third

62

modification discussed in section 2.3, and the result is
displayed in Figure 4-3. Until now, VLC can connect to

FFserver by RTSP.

143 5 L 47 RTSP OPTIONS rtspi//L
1498 o, 084?30 140.113,13,247 TCP 5454 > 432? [ACK] Seq
1400 8, 084576 140 113 13 24? TSP Reply: RTSR/L.O 200 OK

1500 140,113.13. " 47 RTSR DE 3.1

1501 b, 089109 140 113 13, 24? RTSP/S Reply:
SETUR rt

15069108136 140 113.13. 24? TSP pTy
140,11 1

1512 o00e T non R Reply RTSP,fl 02000k

e e i~ e e e 1 e B e~ e 1 e = ey i i 1 u L e ey

AFTER SOME MODIFICATIONS
ALL REPLIES ARE OK !

Figure 4-3 All modifications are completed

63

4.2 Procedure Of Code Segments

code segment time elapsed code segment time elapsed

A 42 c 5

c 4194 D 1

¢ 749084 D 10

E 34 B 2

B 2 c 2443

c 5 D 2
TIME D 18 D 207

B 2 B 2

¢ 3752 c 5

b 298 D 483

B 2 D 9

¢ 6 B 2

D 9 £ 14481

8 2 D 2

¢ 18989 B 2

) 1023 £ 15989

B 2 b 3

Figure 4- 4 Procedure of code segments

In Figure 4-4, the procedures of each code

segment is shown. We can see that the procedure is the

64

same as the one we discussed in section 3.1.6. Code
segment A is performed only one time. And if there is a
connected socket descriptor, the procedure would go in
sequence from code segment B to code segment D and
repeat until the connected socket descriptor is down. And
the detail time used by each code segment is shown in the
appendix . In appendix , we can see that sending is to send
a packet and the time in the bracket in the time elapsed is

the sending time.

65

CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

In this thesis, we present the system architecture
and system flowchart of FFserver. We also show how to
modify FFserver so that VLC could connect to FFserver by

using RTSP signaling.

After the modifications are completed, VLC could
connect to FFserver and play multimedia data which are
streamed by FFserver. If the. multimedia data are MPEG!
files, the quality of play.is.guite good on VLC. But if the
multimedia data are - MPEG2 or MPEG4 files, the quality
would not as good as that of MPEG!1 file on VLC.

In the future, we hope that FFserver would be
modified very well so that all clients could play in a better
guality no matter what kind of multimedia data streamed

by FFserver.

The most important issue in any streaming server is
the timing control. If the timing control mechanism is

good, the streaming server is more stable.

66

References

[1] “FFmpeg” available at http://ffmpeg.mplayerhg.hu/ .

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP :
A Transport Protocol for Real-Time Applications”, Audio Visual
Working Group Request for Comment RFC 3550, IETF, July
2003.

[3] H. Schulzrinne, A. Rao, R. Lanphier, M. Westerlund, and A.
Naraismhan, “Real time streaming protocol (RTSP)”, Internet
Draft RFC 2326, Internet Engineering Task Force, October 27,
2003.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T.
Berners-Lee, "Hypertext Transfer Protocol — HTTP/1.1”,

[5] “Wikipedia” available at
http://en.wikipedia.org/wiki/Main Page .

[6] “RTP Payload Type” availablerat
http://www.iana.org/assignments/rtp-parameters

[7] Chien-hua James Chen, "Design and Implementation of
Real-time Interactive RTP/RTSP Multimedia Streaming
Monitoring System with Bandwidth Smoothing Technique,”
Master thesis, The Department of Communication Engineering,
National Chiao Tung University.

[8] Jong-Shou Wu, ”Analysis of Streaming Server’s Properties,”
Master thesis, The Department of Communication Engineering,
National Chiao Tung Unviersity.

[9] Wei-Tung Chang, “Development and Implementation of
Multimedia Streaming Platform,” Master thesis, The
Department of Communication Engineering, National Chiao
Tung University.

67

Appendix

Code Segment

Time Consumed (uSec)

15478

12

4

15979

65(10)

SENDING

=

4

15931

85(8)

|
SENDING

——

3

15903

17

45

15938

20

4

15973

45(8)

SENDING

15948

19

15973

98(9)

SENDING

"

15894

19

15973

62(8)

SENDING

a7

15886

OOom|O0o|mO0mOO0|m|O0|m|O0mO/O0|m|OO0@OO0mmO|O0|m|O|O|®@

19

68

15972

87(9)

w
0
z
o
z
o)

15902

12

4

16025

90(12)

wn
m
z
=
z
o)

4

15861

35

5

20224

90(11)

w
0
z
o
z
o)

72

15550

22

5

15990

79(9)

wn
m
Z
X
z
o)

15889

13

4

15975

89(10)

wn
T
z
=
z
o)

4

15903

19

4

15970

80(7)

wn
m
z
o
z
o)

48

O WOIO|WOIO|W|OO||OIO|0OIO|BOO|BOO|BOO|BOOTOOT|O|O|®

15869

69

O

12

15978

46(7)

SENDING

15946

13

4

15978

103(17)

SENDING

'

4

15887

41

4

15951

32

42

15919

125(10)

SENDING

4

15867

37(6)

L

SENDING

S~
=

L

3

15975

17

4

15954

SENDING

30(6)

~
=

L

15966

25

5

15958

101(11)

SENDING

S~

L

5

O WOIO|WOIO|W|OO||OIO|0OIO|BOO|BOO|BOO|BOOTOOT|O|O|®

15826

70

O

23

15966

19

15989

48(6)

SENDING

N~

15927

39(7)

S~

SENDING

15950

12

4

15981

82(10)

SENDING

L

e

15856

12

3

15978

26

4

15965

104(6)

SENDING

4

15910

30(7)

SENDING

4

15940

13

4

15977

130(9)

SENDING

4

O WOIO|WOIO|W|OO||OIO|0OIO|BOO|BOO|BOO|BOOTOOT|O|O|®

15862

71

13

72

	封面.pdf
	書名頁.pdf
	NEW THESIS .pdf

