

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

串流平台的程序控制

Process Control in Streaming Server

研究生 ： 邱程翔

 指導教授 ： 張文鐘 博士

中 華 民 國 九十六 年 八 月

國 立 交 通 大 學

電信工程學系

碩 士 論 文

A Thesis

Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Communication Engineering

August 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年八月

 i

串流平台的程序控制

研究生 : 邱程翔 指導教授 : 張文鐘 博士

國立交通大學電信工程學系碩士班

摘要

串流伺服器的程序控制主要包含了連線建立、檔案處理

及封包傳送三項主要任務。連線建立包含了 socket 間的資

料傳遞以及透過一個狀態的機制來傳遞信令；檔案處理便是

影音格式的解析以及訊框的切割與封裝；最後的部份便是封

包傳送，此部分的重點在於時間的控制機制。

本論文主要是從單行程的觀點去探討串流伺服器的建

構程序。一般來說，串流伺服器可分為多行程以及單行程架

構，這兩種架構在表現上雖然差別不明顯，但是單行程細部

的時間控制相較於多行程便困難許多，因為這牽涉到了影音

格式的解編碼問題。

 此外，本論文也實際修改一套開放程式碼的串流信令，

使得改良後的串流系統能夠和市面上的商業串流系統得以

溝通，其細部的修改重點也是本論文論述的核心所在。

 ii

Process Control in Streaming Server

Student : Cheng - Siang Chiu Advisor : Dr. Wen – Thong Chang

Department of Communication Engineering

National Chiao Tung University

Abstract

 Streaming systems consist of three big jobs which

include connection setup, file processing, and packets

sending. Connection setup consists of the socket setup

and the state mechanism which is used to exchange

signaling; file processing contains the file formats’ parser

and the packetizer; packets sending focuses on the timing

control mechanism.

 In this work, we investigate how streaming servers

are constructed in a single process’s view. Generally

speaking, streaming servers can be categorized into two

structures which are multi process structure and single

process structure. Although the differences in the

performance of the two structures are not obvious, the

detail implementations of single process are more

complicated in timing control since the coding problems

 iii

of the file formats.

 Besides, we also try to modify an open source

streaming server so that it can connect to commercial

streaming servers by RTSP signaling.

 iv

致謝

 感謝論文指導教授 張文鐘 博士，在兩年的讀書期間，不

斷磨練、教導我，不論颳風下雨，也會在實驗室和我們互相

討論及研究學問，還有花時間指點論文不足的地方，再次謝

謝老師兩年的教誨。同時也感謝 林大衛教授、廖維國教授

及何文楨主任，於口試時的寶貴建議。

 感謝實驗室一起奮鬥的學長：培哲學長、為棟學長，同學：

宗修、新華、榮勝、書維、政鴻、瑩甄、孟潔以及素仙，學

弟：宗學、文賢、明山、政達以及峻權，特別謝謝幫我看程

式、整理數據和陪我聊天的素仙，和大家一起讀書、討論功

課、打球，讓我這兩年過得特別充實，也特別具有懷念的價

值。

 此外，還有一起住了兩年的室友，博元、舜庭、堉棋、憲

諒、亭州以及建男，懷念和你們一起吃東西聊天的時光。

 最後，感謝我的家人，爸爸、媽媽以及老弟，在這兩年給

我的鼓勵以及支持，謝謝您們。

 v

Acknowledgement

 I would like to express my gratitude to my

academic and research advisor Dr. Wen-Thong Chang for

his guidance and constant support in helping my conduct

and complete this work. I would also like to thank my

colleagues in Wireless Multimedia Communication

Laboratory for their active participation in this

research.

 I owe my sincere appreciation to my families and

relatives who have supported and encouraged my over the

years. Most important of all, I want to extend my

profound appreciation to my beloved parents and

families, for their love, affection, and invaluable

support during my life and studies.

 vi

Table of Contents

摘要 .. I

ABSTRACT .. II

致謝 .. IV

ACKNOWLEDGEMENT .. V

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. VIII

LIST OF TABLES ... IX

CHAPTER 1 .. 1

1.1 BA C K G R O UN D ... 1

1.2 MO T I V A T ION S .. 4

1.3 RESEARCH GO A L S .. 4

1.4 THESIS OUT LIN E S .. 5

CHAPTER 2 .. 6

2.1 THE RE A L-TI M E TRANSPORT PR OT O C O L ... 6

2.1.1 RTP ... 7

2.1.2 RTCP .. 9

2.1.3 RTSP .. 10

2.2 IN T R O D U CT I O N T O FFS E R V E R ... 16

2.3 MODIFICATIONS IN FFS E R V E R .. 20

CHAPTER 3 .. 25

SYSTEM ARCHITECTURE AND FLOWCHART OF .. 25

3.1 SYSTEM AR C H I T E C T U R E O F A STR E A MIN G SE R V E R 25

3.1.1 SOCKET SETUP (Code Segment A) In .. 29

A Streaming Server .. 29

3.1.2 LABELING (Code Segment B) In A Streaming Server .. 32

3.1.3 SELECT (Code Segment C) In A Streaming 35

Server .. 35

3.1.4 HANDLING (Code Segment D) In FFserver 43

3.1.5 ACCEPT (Code Segment E) In FFserver 47

3.1.6 Overall Procedures In FFserver .. 49

3.2 RTSP ME TH O D S IM P L E M E N T E D IN FFSERVER .. 52

3.2.1 RTSP_CMD_OPTIONS() .. 52

 vii

3.2.2 RTSP_CMD_DESCRIBE() ... 53

3.2.3 RTSP_CMD_SETUP() .. 56

3.2.4 RTSP_CMD_PLAY() ... 58

CHAPTER 4 .. 61

4.1 RESULTS BEFORE AND AFTER THE MODIFICATIONS IN FFS E R V E R 61

4.2 PR O C E D U RE OF CO D E SE G M E N T S .. 64

CHAPTER 5 .. 66

REFERENCES ..67

APPENDIX……………………………………………………………………………………68

 viii

List of Figures

Figure 2- 1 The main structure of FFmpeg 18
Figure 2- 2 Results of connection to FFserver 19
Figure 2- 3 Code segment 1 needs to be modified 21
Figure 2- 4 Code segment 2 needs to be modified 21
Figure 2- 5 Code segment 3 needs to be modified 23
Figure 2- 6 Code segment 4 needs to be modified 23
Figure 3- 1 System Architecture of FFserver .. 25
Figure 3- 2 Pseudo Codes of http_server() in FFserver 26
Figure 3- 3 Components of SOCKET SETUP 31
Figure 3- 4 Flowchart of Code Segment B ... 34
Figure 3- 5 Four macros of fd_set datatype .. 38
Figure 3- 6 Example of how fd_set is constructed 38
Figure 3- 7 Pseudo Codes of Code Segment C 41
Figure 3- 8 Flowchart of Code Segment C ... 42
Figure 3- 9 Flowchart of Code Segment D ... 45
Figure 3- 10 Pseudo Codes of Code Segment D....................................... 46
Figure 3- 11 Pseudo Codes of rtps_parse_request() 46
Figure 3- 12 Flowchart of Code Segment E ... 48
Figure 3- 13 Pseudo Codes of rtsp_cmd_options() 53
Figure 3- 14 Pseudo Codes of rtsp_cmd_describe() 54
Figure 3- 15 Pseudo Codes of prepare_sdp_description() 54
Figure 3- 16 Pseudo Codes of rtsp_cmd_setup() 56
Figure 3- 17 Pseudo Codes of rtsp_cmd_play() 58
Figure 3- 18 PTS : the pictures’ display order .. 60
Figure 3- 19 DTS : the pictures’ coding order .. 60
Figure 4- 1 Old ffserver’s packets captured by Ethereal 61
Figure 4- 2 Packets after first modifications ... 62
Figure 4- 3 All modifications are completed .. 63
Figure 4- 4 Procedure of code segments ... 64

 ix

List of Tables

Table 2- 1 Overview of RTSP methods, their direction, and what

objects they operate on. .. 15
Table 3- 1 Payload Types Constructed In FFserver 55

 1

CHAPTER 1

INTRODUCTION

1.1 Background

 With the rising capacity of bandwidth and the

increasing processing speed of CPUs, we can transmit

more multimedia audio/video data, not just texts or

pictures over the internet. Therefore, the applications of

multimedia have played an unreplaceable role in our daily

life. However, even with the current capacity of

bandwidth, usually 10Mbps downloading speed, it is still a

time-consuming job to download a movie that is one and

half an hour long, 1GB in size, when users want to see

movies online. Because it costs at least 15 to 20 minutes to

download the whole movie if the network is not congested,

and users usually can not stand waiting so much long time.

Users may lose their interests over watching movie when

the network is congested or the movie is not the one they

want to see after the movie is downloaded.

To overcome this problem, the new technology

called streaming has been developed. Instead of

transmitting the whole file, the content server will divide

the media file into tiny minipackets (usually around 1024

 2

bytes), and transmit them to the users. The major

distinction between streaming and the traditional

downloading is that the former offers “play while

downloading” while the later only supports “play after

downloading.” With streaming users can watching movies

while downloading them.

There are three important protocols used in

streaming. They are The Real-Time Streaming Protocol

(RTSP), Real-Time Transport Protocol (RTP), and the

Real-Time Transport Control Protocol (RTCP). They were

specifically designed to stream media over networks. The

latter two are built on top of User Datagram Protocol

(UDP). RTP defines a standardized packet format for

delivering audio and video over the internet. And the

other two counterparts, RTCP and RTSP, work with RTP

to make streaming systems more reliable. More details

about the three protocols are presented in Chapter 2.

UDP sends the media stream as s series of small

packets. This is simple and efficient; however, packets are

liable to be lost or corrupted in transit. Depending on the

protocol and the extent of the loss, the user may be able to

recover the data with error correction techniques, may

interpolate over the missing data, or may suffer a

dropout.

 3

Transmission Control Protocol (TCP) guarantees

correct delivery of each bit in the media stream. However,

they accomplish this with a system of timeouts and retries,

which makes them more complex to implement. It also

means that when there is data loss on the network, the

media stream stalls while the protocol handlers detect the

loss and retransmit the missing data. Users can minimize

the effect of this by buffering data for display.

In any multimedia system, a powerful streaming

server is the key component to judge if the system is an

excellent competitor in the market. However, in the

modern market three mainstream streaming servers,

Media Services, RealSystem and Quick Time Server, could

not talk to each other by using RTSP. Each company does

not release its server’s source codes and roughly follow

the standards. That results in a circumstance that a player

could not connect to a rival streaming server. It is the

situation that confuses every consumer. Because it means

consumers have to use a set of multimedia systems

developed by a single company. So in this research we try

to modify an open source streaming server, FFserver, to

be able to stream multimedia data to another open source

player, VLC media player.

 4

1.2 Motivations

The motivations of this work are as the following :

 The open source FFserver can not support RTSP

signaling very well.

 Timing control is one of the most critical issue in any

streaming system.

 Single process streaming server is hard to construct.

1.3 Research Goals

The goals of this research are as follows:

 Modifying a streaming server so that it could stream

multimedia data by RTSP.

 Figuring out which parameters or syntax are necessary

in the RTSP.

 Describing one feasible timing control algorithm

implemented in streaming servers.

 5

1.4 Thesis Outlines

 The organizat ion of this thesis is as fo l lows.

Firstly, a brief background of know-how and some code

modifications in FFserver are presented in Chapter 2.

Secondly, the structures and procedures of an open source

streaming server are covered in Chapter 3. In Chapter 4,

experimental results are the main topics. At last, research

conclusions and future works are depicted in Chapter 5.

 6

CHAPTER 2

STREAMING TECHNOLOGIES

AND

FFSERVER’S INTRODUCTION

 In this chapter, we present some import

technologies and FFserver’s introduction. We briefly

introduce The Real-Time Transport Protocol (RTP) [2],

The Real- Time Transport Control Protocol (RTCP) [2],

and The Real-Time Streaming Protocol (RTSP) [3] firstly.

Then FFserver is the following discussions which cover

socket and some modifications in FFserver.

2.1 The Real-Time Transport Protocol

The Transmission Control Protocol (TCP) is one of

the core protocols in the internet protocol suite. Using

TCP, applications on networked hosts can create

connections to one another, over which they can exchange

streams of data using Stream Sockets. The protocol

guarantees reliable and in-order delivery of data from

sender to receiver. That means retransmissions of packets

are performed when packets are missed or timed out.

 7

Consequently, TCP does not assure the timely delivery of

packets.

Despite the fact that the mechanisms of TCP are

necessary in many applications, such as World Wide Web,

e-mail and File Transfer Protocol, real-time transmissions

can not use it. Another protocol, The Datagram Protocol

(UDP), can solve the timely delivery problem. Since UDP

does not support retransmission, it provides a faster

transmission than TCP dose over congested networks.

The Real-Time Transport Protocol (RTP) has the

ability to compensate for the missing functions of UDP.

And RTP is usually based on top of UDP; that is, RTP

packets are usually encapsulated in UDP packets. In the

following three sections, we describe the fundamental

concepts of RTP, The Real- Time Transport Control

Protocol (RTCP) and The Real-Time Streaming Protocol

(RTSP).

2.1.1 RTP

RTP defines a standardized packet format for

delivering audio and video over the internet. It was

developed by the Audio-Video Transport Working Group

 8

of the IETF and first published in 1996 as RFC 1889 which

was made obsolete in 2003 by RFC 3550. RTP can carry

any data with real-time characteristics, such as interactive

audio and video. It goes along with the RTCP and it's built

on top of UDP. Applications using RTP are less sensitive

to packet loss, but typically very sensitive to delays, so

UDP is a better choice than TCP.

 According to RFC 1889, RTP provides the

following services :

 Payload-type identification – Indication of what kind

of content is being carried.

 Sequencing numbering – PDU sequence numbering.

 Time stamping – allow synchronization and jitter

calculations.

 Delivery montering.

 9

2.1.2 RTCP

The Real-Time Transport Control Protocol

(RTCP), defined in RFC 3550 [2], is a sister protocol of

RTP. RTCP provides out-of-band control information for

RTP in the delivery and packaging of multimedia data, but

does not transport any data itself. It is used periodically

to transmit control packets to participants in a streaming

multimedia session. The primary function of RTCP is to

provide feedback on the Quality of Service (QoS) being

provided by RTP.

 RTCP gathers statistics on a media connection and

information such as bytes sent, packets sent, lost packets,

jitter, feedback and round trip delay. An application may

use this information to increase the quality of service

perhaps by limiting flow, or maybe using a low

compression codec instead of a high compression codec.

RTCP is used for QoS reporting.

 There are several type of RTCP packets: Sender

report packet, Receiver report packet, Source Description

RTCP Packet, Goodbye RTCP Packet and Application

Specific RTCP packets.

 10

2.1.3 RTSP

The Real Time Streaming Protocol (RTSP),

developed by the IETF and created in 1998 as RFC 2326

[3], is a protocol for use in streaming media systems

which allows a client to remotely control a streaming

media server, issuing VCR-like commands such as "play"

and "pause", and allowing time-based access to files on a

server.

The protocol is similar in syntax and operation to

HTTP but RTSP adds new requests. A summary of

available RTSP methods are listed in Table 2.1. And the

followings are the brief introductions of each method.

 DESCRIBE

- The DESCRIBE method retrieves the description of

a presentation or media object identified by the

request URL from a server. It may use the Accept

header to specify the description formats that the

client understands. The server responds with a

description of the requested resource. The

DESCRIBE reply-response pair constitutes the

media initialization phase of RTSP.

 11

 ANNOUNCE

- The ANNOUNCE method serves two purposes :

i. When sent from client to server,

ANNOUNCE posts the description of a

presentation or media object identified by

the request URL to a server.

ii. When sent from server to client,

ANNOUNCE updates the session description

in real-time.

 GET_PARAMETER

- The GET_PARAMETER request retrieves the value

of a parameter of a presentation or stream specified

in the URI. The content of the reply and response is

left to the implementation. GET_PARAMETER with

no entity body may be used to test client or server

liveness (“ping”).

 OPTIONS

- The OPTIONS method represents a request for

information about the communication options

available on the request/response chain identified

by the Request-URI. This method allows the client

to determine the options and/or requirements

associated with a resource, or the capabilities of a

server, without implying a resource action or

 12

initiating a resource retrieval.

 PAUSE

- The PAUSE request causes the stream delivery to be

interrupted (halted) temporarily. If the request URL

names a steam, only playback and recording of that

stream is halted. For example, for audio, this is

equivalent to muting. If the request URL names a

presentation or group of streams, delivery of all

currently active streams within the presentation or

group is halted. After resuming playback or

recording, synchronization of the tracks MUST be

maintained. Any server resources are kept, though

servers MAY close the session and free resources

after being paused for the duration specified with

the timeout parameter of the Session header in the

SETUP message.

 PLAY

- The PLAY method tells the server to start sending

data via the mechanism specified in SETUP. A client

MUST NOT issue a PLAY request until any

outstanding SETUP requests have been

acknowledged as successful. The PLAY request

positions the normal play time to the beginning of

the range specified and delivers stream data until

 13

the end of the range is reached.

 RECORD

- This method initiates recoding a range of media

data according to the presentation description. The

timestamp reflects start and end time. If no time

range is given, use the start or end time provided in

the presentation description. If the session has

already started, commence recording immediately.

 REDIRECT

- A REDIRECT request informs the client that it must

connect to another server location. It contains the

mandatory header Location, Which indicated that

the client should issue requests for that URL. It may

contain the parameter Range, which indicated when

the redirection takes effect. If the client wants to

continue to send or receive media for this URI, the

client MUST issue a TEARDOWN request for the

current session and a SETUP for the new session at

the designated host.

 SETUP

- The SETUP request for a URI specifies the transport

mechanism to be used for the streamed media. A client

can issue a SETUP request for a stream that is already

 14

playing to change transport parameters, which a server

MAY allow. If it does not allow this, it MUST respond

with error “455 Method Not Valid In This State”. For

the benefit of any intervening firewalls, a client must

indicate the transport parameters even if it has no

influence over these parameters, for example, where

the server advertises a fixed multicast address.

 SET_PARAMETER

- This method requests to set the value of a parameter

for a presentation or stream specified by the URI.

 TEARDOWN

- The TEARDOWN request stops the stream delivery

for the given URI, freeing the resources associated

with it. If the URI is the presentation URI for this

presentation, any RTSP session identified

associated with the session is no longer valid.

Unless all transport parameters are defined by the

session description, a SETUP request has to be

issued before the session can be played again.

 15

Table 2- 1 Overview of RTSP methods, their direction, and what objects they

operate on. Legend: P=presentation, S=stream, R=Responds to,

Sd=Send, Opt=Optional, Req= Required

 16

2.2 Introduction to FFserver

FFserver is the streaming system of the open

source software - FFmpeg [1]. We can download FFmpeg

from the website [1]. FFmpeg is a system that can record,

convert and stream audio and video. It includes five

components :

 ffmpeg is a command line tool to convert one file

format to another, and it could grab and encode in real

time from a TV card.

 ffserver is an HTTP multimedia streaming server. It

can’t support RTSP connections yet.

 ffplayer is a media player.

 libavcodec is a library containing all FFmpeg

audio/video encoders and decoders.

 libavformat is a library containing parsers and

generators for all common audio/video formats.

 17

 Since the research is mainly focused on a

streaming system, we only discuss FFserver. Just as

mentioned above, FFserver is a streaming server that

could stream audio/video. But FFserver released on the

official website only supports HTTP connections.

Therefore, we try to modify FFserver such that it can

accept RTSP connections. And we discuss the

modifications in section 2.3.

As one of the five components of FFmpeg, FFserver

is built under Linux. Hence, we choose to build and

modify FFserver under Linux. In the following steps, we

show how to build and use FFserver.

i. Extract the downloaded FFmpeg into one folder.

Figure 2-1 is the main architecture of FFmpeg.

ii. Add the ip address and gateway of client in

/ffmpeg/doc/ffserver.conf in the form : ACL allow

140.113.13.245 140.113.13.254

iii. Return to /ffmpeg folder and type make in the

command line.

 18

iv. Type ./ffserver –f doc/ffserver.conf . Then FFserver is

ready to serve.

v. Open Internet Explorer (IE) and type

140.113.13.247:8090/stat.html . Figure 2-2 shows the

results after the connection is granted.

Figure 2- 1 The main structure of FFmpeg

 19

Figure 2- 2 Results of connection to FFserver

 20

2.3 Modifications in FFserver

The released version of FFserver on the official web

site [1] is not complete in RTSP signaling. Therefore, we

can not connect to FFserver by using VLC as a client. So in

this section, we try to modify the RTSP signaling of

FFserver such that VLC is able to connect to FFserver by

RTSP connection. For later discussion’s convenience, we

dub the modified FFserver new FFserver and the

official-released FFserver old FFserver.

 We use Wireshark, a packet analyzer, to analyze

the packets between old FFserver and VLC. And we found

that there are four code sections need to be modified. The

followings are the modified segments.

i. In ffserver.c, delete the code segment from line 2745

to line 2750. And this segment is shown in Figure 2-3.

Since we do not capture video from live camera, but

from the file exits in the disk. We delete this code

segment.

 21

Figure 2- 3 Code segment 1 needs to be modified

ii. In ffserver.c, add the code segment in line 2767. Figure

2-4 presents this code segment. According to RFC

2326 [3] and RFC 2068 [4], this header is required.

Content-Base is used to specify the base URI for

resolving the relative URLs within the entity.

Figure 2- 4 Code segment 2 needs to be modified

 22

iii. In ffserver.c, modify the code segment in line 2712.

Figure 2-5 exhibits the code segment. If we do not

modify the value i as (i+1)%2, the PLAY reply would go

wrong. Because the test file in our work is a mpeg file,

and there are two streams, video and audio, in this

kind of file. After parsing the file, if we do not modify

this code segment, audio stream would go along with

the statement,” payload_type=14 and streamid=0,”

and video stream would go along with the statement,”

payload_type=32 and streamid=1,” in sdp. Payload

type which is 14 is MPA and 32 is MPV according to

Table 3-1 . Streamid is used to identify the stream. The

request and reply between server and the client do not

go wrong. But the contents of PLAY method shown on

the server are not correct. It shows that audio stream

is streamid 1 and vido stream is streamid 0. The

contents are not right because we declare streamid 0

for audio stream and streamid 1 for video stream in

sdp. Therefore, we modify the contents in sdp as that,

streamid 0 for video stream and streamid 1 for audio

stream. And this time, the contents of PLAY method

shown on the server are correct, audio stream is

streamid 1 and video stream is stremid 0.

 23

Figure 2- 5 Code segment 3 needs to be modified

iv. In Utils.c, delete the code segment from line 2122 to

line 2125. And Figure 2-6 shows this code segment. If

we do not delete this code segment, we would get the

error message “ error non monotone timestamps

st->cur_dts >= pkt >= pkt->dts st:st->index.” This

error message indicates that FFserver does not allow

two identical DTS. But if we delete this code segment,

FFserver would function very well; that is to say, the

statement that there are no two identical DTS is not

correct.

Figure 2- 6 Code segment 4 needs to be modified

 24

After the four code segments are modified, VLC can

connect to FFserver by using RTSP signaling connection.

 25

CHAPTER 3

SYSTEM ARCHITECTURE AND FLOWCHART OF

A STREAMING SERVER

 In this chapter, we present the overall system

architecture and system flow chart of a streaming server.

3.1 System Architecture of A Streaming Server

Based on the functionalities a streaming server

should have, we divide the system architecture into five

segments in this work. And Figure 3-1 is the system

architecture of a streaming server. Each segment consists

of many actions and we would introduce each segment in

the following sections.

Figure 3- 1 System Architecture of Streaming Server

 26

Figure 3- 2 Pseudo Codes of http_server()

 27

We discuss the single process streaming server. A

single process means that only one process or thread is

created and the system flow is sequential, and no context

switch happens. Single process servers need to have an

infinity loop which makes sure the server would always

operate. And in Figure 3-2, we would see that there is an

infinity loop indeed. Figure 3-2 is the pseudo codes of

http_server().

A streaming server has to check if there are new

connections or new requests and to send the data to the

clients. Firstly, a streaming server labels each connection

a state which the connection is going to look for. The state

may be a ready-to-send-packet state or a wait-for-service

state or a ready-to-send-reply state and so on. Secondly,

according to the state just labeled, server gives each

connection different service, like parsing requests or

sending packets. After the server completes the service of

one client, the server goes on serving the other clients

which are accepted and wait in the waiting list. If no other

connections wait in the waiting list, the server then would

check if there are new connections or new requests. And

once a new connection is accepted, the server would label

the connection state and go to serve the connection. The

server repeats the four stages, state-labeling ,

service-giving, connection-checking, and

 28

connection-accepting, until the server shuts down.

In Figure 3-2, we divide the overall system

architecture into five code segments. The five code

segments cooperate to achieve the three stages talked in

the previous paragraph. For example, code segment B and

code segment C are in charge of labeling states and

checking connections, code segment D accounts for

sending packets to the clients and parsing the requests

from the clients, and code segment E is responsible for

accepting new connections. Next we would introduce the

five code segments which are under http_server().

The followings are the five code segments in Figure

3-2. And we refer SOCKET SETUP to code segment A,

LABELING to code segment B, SELECT to code segment C,

HANDLING to code segment D, and ACCEPT to code

segment E.

 29

3.1.1 SOCKET SETUP (Code Segment A) In

A Streaming Server

Socket setup is the first step for every network

programming. Hence, socket setup is also the first part in

the streaming server’s architecture. In Figure3-3, we show

the detail components of the first part, SOCKET SETUP.

There are a few important components in the SOCKET

SETUP. They are :

 socket ()

- The socket function is to create a socket. And the

returned value of socket() is a socket descriptor

which is very similar to a file descriptor. Just like

we use open() to create a file descriptor and access

the files in the disk. We use socket() to create a

socket ,and we call this socket a listening socket.

 bind()

- The bind function is to associate a socket with a

network address.

 connect()

- The connect function is to connect a socket to a

remote network address.

 30

 listen()

- The listen function is to wait for incoming

connection attempts.

 accept()

- The accept function is to accept incoming

connection attempts. After the accept function is

returned , a socket descriptor is given. This socket

descriptor is called a connected socket descriptor

and not a listening socket descriptor any more.

Although accept is not categorized in SOCKET

SETUP in this work, it is still a very important

socket API in network programming.

Because the streaming server is a single process

and only one listening socket is needed. Hence this code

segment is not included in the infinity for loop. In this

code segment, we only do socket(), bind(), and listen(),

accept() is implemented in code segment E. Since code

segment E is mainly for accepting new connections.

Therefore, we do not implement accept() in this code

segment. If the listening socket is successfully created,

the process would go to the next code segment, code

segment B.

 31

Figure 3- 3 Components of SOCKET SETUP

 32

3.1.2 LABELING (Code Segment B) In A

Streaming Server

 Because we have TCP sockets and UDP sockets in

the streaming server, server has to give different sockets

different events. And TCP sockets may transit its state

between read or write state, we have to implement a state

machine so that server can handle different states of TCP

sockets.

In Figure 3-4, we show the flowchart of code

segment B in more details. We could see that the

streaming server would check all socket descriptors and

assign each socket descriptor an events. But the listening

socket descriptor is always assigned a POLLIN events in

this code segment. Moreover listening socket descriptor

does not have state, FFserver would go to the default case,

do nothing, leave the switch multi-selection structure and

go to check another socket descriptors. The variable

events means that the action the socket descriptors is

going to look for. For example, if a connected client is

labeled a RTSPSTATE_WAIT_REQUEST state, then the

connected client is going to look for a POLLIN event. And

if a connected client is labeled a

RTSPSTATE_SEND_PACKET sate or a

RTSPSTATE_SEND_REPLY state, then the connected

 33

client will take care of a POLLOUT event. In any server, a

connected client is a connection request by a client and

the connection is accepted by the server. Once a

connection is accepted, then the server would give this

connection of the client a connected socket descriptor.

That is, from then on, the connected socket descriptor

represents the connection of the client. So the server

could send or read data from the client by using the

corresponding connected socket descriptor; that is, to

send data to or read data from the connected socket

descriptors is equivalent to send data to or read data from

the connected clients. A more detail information about

socket descriptors are discussed in section 3.3.1. A

POLLIN event indicates that the connected socket

descriptor is ready to read data from the connected client;

a POLLOUT event means that the connected socket

descriptor is going to send data from server to the client.

 34

Figure 3- 4 Flowchart of Code Segment B

 35

3.1.3 SELECT (Code Segment C) In A Streaming

Server

 Once each connected socket descriptor is given a

events, we then need to check if the connected socket

descriptor has responses and which state the connected

socket descriptor belongs to.

This code segment is mainly to use select to notify

kernel that there are new connections. Before we go on the

discussion of this code segment, select should be

introduced firstly.

The select function allows the process to instruct

the kernel to wait for any one of multiple events to occur

and to wake up the process only when one or more of

these events occurs or when a specified amount of time

has passed. As an example, we can call select and tell the

kernel to return only when

 any of the socket descriptors {3,9} are ready for

reading, or

 any of the socket descriptors {4,6} are ready for

writing, or

 any of the socket descriptors {5,7} have an exception

 36

condition pending, or

 after 10 seconds have elapsed,

where 3, 9, 4, 6, 5, and 7 in this work are socket

descriptors.

That is, FFserver tells the kernel what socket

descriptors FFserver is interested in (for reading, writing,

or an exception condition) and how long to wait. Besides

socket descriptors, any descriptor can be tested using

select.

 The select function is shown in the following

block.

int select (int maxfd1, fd_set *readset, fd_set *writeset,

fd_set *exceptset, struct timeval *timeout)；

There are five arguments maxfd1, readset, writeset,

exceptset, and timeout in the select. The functions of

these five arguments are explained as follow:

 maxfd1

- This argument specifies the number of socket

descriptors to be tested.

 37

 readset

- This argument defines the socket descriptors that

we want the kernel to test for reading condition.

 writeset

- This argument designates the socket descriptors

that we want the kernel to test for writing condition.

 exceptset

- This argument mentions the socket descriptors that

we want the kernel to test for exception condition.

 timeout

- This argument tells the kernel how long to wait for

one of the specified socket descriptors to become

ready.

Now a design problem is how to specify one or

more descriptor values for each of these three arguments,

readset, writeset, and exceptset. Select uses descriptor

sets, typically an array of integers, with each bit in each

integer corresponding to a socket descriptor. For example,

using 32-bit integers, the first element of the array

corresponds to socket descriptors 0 through 31, the

second element of the array corresponds to descriptor 32

through 63, and so on. All the implementation details are

 38

irrelevant to the application and are hidden in the fd_set

datatype and the following four macros shown in Figure

3-5:

Figure 3- 5 Four macros of fd_set datatype

We allocate a socket descriptor set of the fd_set

datatype, we set and test the bits in the set using these

macros. For example, to define a variable of type fd_set

and then turn on the bits for socket descriptors 3 and9, we

write the sample codes presented in Figure 3-6.

Figure 3- 6 Example of how fd_set is constructed

 39

Now we know more about select and fd_set, we

could go on our work. In this segment, we set the socket

descriptors into the corresponding fd_set. In Figure 3-7,

we show the pseudo codes of code segment C and the

flowchart of code segment C which is displayed in Figure

3-8. After entering this code segment, server firstly

examines the events of the connected socket descriptors,

then sets the connected socket descriptors into one of the

fd_sets. For example, if the events of the connected socket

descriptor is POLLIN, the discriminant “if (fds[i].events &

POLLIN)” would be true, then server turns on the connected

socket descriptor in the read_set. Otherwise, if the events

of the connected socket descriptor is POLLOUT, server

would turn on the connected socket descriptor in the

write_set. After the connected socket descriptors are set

in any one of the fd_sets, server calls select to help

inspect whether the connected socket descriptors are

ready to read or write. Once the select function is

returned, the server examines if the discriminant

“FD_ISSET(fds[i].events,&read_set)” is true, if it is true,

server assigns the revents of the connected socket

descriptor POLLIN. But if the discriminant

“FD_ISSET(fds[i].events,&write_set)” is true, server

appoints the revents of the connected socket descriptor

POLLOUT. select is returned in this system only when

new connections or RTSP methods that include

 40

DESCRIBE, OPTIONS, SETUP, PLAY, PAUSE, and

TEARDOWN appear. FD_ISSET here copes with the

situation that which socket descriptors are caught by

select. This can help server to decide whom the data

should be send to or receive from. The revents is used to

show what events occurred and is an important variable in

code segment E, so we discussed this variable in code

segment E. After assigning the corresponding revents to

the connected socket descriptors, the next step is to enter

code segment D.

 41

Figure 3- 7 Pseudo Codes of Code Segment C

 42

Figure 3- 8 Flowchart of Code Segment C

 43

3.1.4 HANDLING (Code Segment D) In FFserver

After the connected socket descriptor is ready to

read or write, then server starts to process the connected

socket descriptor’s requests.

Figure 3-9 is the flowchart of code segment D and

Figure 3-10 is the pseudo code of this segment. Code

segment D is responsible for the handlings of the requests

of the connected socket descriptors, including parsing and

sending packets. Server firstly checks the events of the

connected socket descriptors. If the events of the

connected socket descriptor is

RTSPSTATE_SEND_PACKET, the server enters the action,

packets_deliver. Packets_deliver consists of many

sub-functions which mainly includes packets_sending and

timing_calculating. Packets_sending is the action that

sends the packets to the connected socket descriptor.

Timing_calculating is mainly to calculate the PTS and

DTS of the packets and the sending time of each packet.

But the packets_deliver is not going to talk about in this

work. Back to the switch case choices of the connected

socket descriptors, if the events of the connected socket

descriptor is RTSPSTATE_WAIT_REQUEST, the server

would call the sub-function, rtsp_parse_request(), shown

in Figure 3-11 . In function rtsp_parse_request(),server

 44

parses the methods the connected socket descriptor

requests and does the corresponding functions. For

example, if the method the connected socket descriptor

requests is OPTIONS, the server would call the function ,

rtsp_cmd_options() and does the codes in the function to

fulfill the request of the connected socket descriptor.

Code segment D is implemented with a for loop. The loop

will repeat several times which are the number of the

connected socket descriptors. In each loop of code

segment D, if server is in a packets_deliver action, server

would delivery just one frame of the file the connected

socket descriptor requests and then finish this loop and go

to another loop if there are more than two connected

socket descriptors exist. And if server is in the

sub-function rtsp_parse_request(),server would parse the

RTSP method the connected socket descriptor requests

and leave this sub-function when no further method is

requested from the connected socket descriptor. In Figure

3-10, we can see that there is a recv() in case

RTSPSTATE_WAIT_REQUEST. Server parses the

connected socket descriptor’s requests which are buffered

in the buffer specified in the second argument in recv(). If

there is a new RTSP method arrives from the connected

socket descriptor, this method would be caught by select

in code segment C. Then server uses recv() to receive this

method, parses this method, and executes the

 45

corresponding sub-function.

Figure 3- 9 Flowchart of Code Segment D

 46

Figure 3- 10 Pseudo Codes of Code Segment D

Figure 3- 11 Pseudo Codes of rtps_parse_request()

 47

In Figure 3-11, there are many RTSP methods

string comparisons. If the method the connected socket

descriptor requests is DESCRIBE, the following function

needs to be executed is rtsp_cmd_descirbe(). So do the

other methods.

3.1.5 ACCEPT (Code Segment E) In FFserver

Figure 3-12 is the flowchart of code segment E. In

this code segment, server decides whether to accept a new

connection. Server does not check the already connected

socket descriptors but just checks the listening socket

descriptor which is put in the read_set. If a new

connection connects to server, then select would know the

new connection in the read_set. And a variable revents is

assigned to POLLIN. Variable revents indicates that the

event which just occurred. Using this variable revents

which is now POLLIN, server would enter the

sub-function, new_connection(), accept this new

connection, and give this new connection a new connected

socket descriptor. After code segment E completes the

work, server goes back to code segment B.

 48

Figure 3- 12 Flowchart of Code Segment E

 49

3.1.6 Overall Procedures In FFserver

After the five code segments are introduced in the

above sections, now let’s go through the overall

procedures from code segment A to code segment E. We

start server by executing the executable file ffserver.c. The

process would be in the main function of ffserver.c. But

the main function of ffserver.c just does some

initializations. Therefore, we check the most important

sub-function, http_server(). In http_server(), the first

thing to do is to create a listening socket and this part is

shown in code segment A. After the listening socket is

initialized, FFserver enters the infinity loop. The first

code segment in the infinity loop is code segment B. We

make the events of the listening socket descriptor always

POLLIN, as shown in Figure 3-2. Then at the beginning

because no connection is accepted by FFserver, FFserver

would pick the default case in the switch

multiple-selection structure, leave this switch structure,

and enter code segment C. In code segment C, we

encounter a switch multiple-selection structure. For the

reason that the events of the listening socket descriptor is

POLLIN, so FFserver puts this listening socket descriptor

in the read_set and calls select. Fortunately, a new

connection from a client connects to FFserver, then select

would return. select returns because the listening socket

 50

descriptor in the read_set is set. Next, the revents of the

listening socket descriptor is assigned POLLIN.

Subsequently FFserver advances to code segment D.

Although a new connection is caught by select, and

FFserver moves to code segment D for handling the new

connections’ request. But this new connection has not

been accepted by FFserver and given a new connected

socket descriptor. So FFserver does nothing and goes to

code segment E. This time FFserver would give this new

connection a connected socket descriptor by calling accept.

Now the new connection has its own connected socket

descriptor and FFserver labels this connected socket

descriptor RTSPSTATE_WAIT_REQUEST.

Now we go through this procedure again , and call

this a second loop. This time the connected socket

descriptor has been existed and has a

RTSPSTATE_WAIT_REQUEST state. So in code segment

B, the events of this connected socket descriptor is

POLLIN. And in code segment C, this connected socket

descriptor is put into the read_set since it has a POLLIN

events. Subsequently, owing to the connected socket

descriptor has requests, select would return. The revetns

of this connected socket descriptor is assigned POLLIN.

Then FFserver enters code segment D. In code segment D,

FFserver parses the requests from the connected socket

 51

descriptor and executes the corresponding sub-function,

like rtsp_cmd_options or rtsp_cmd_describe. When the

request of the connected socket descriptor is PLAY, the

state of this connected socket descriptor would be

changed to RTSPSTATE_SEND_PACKET in sub-function

rtsp_cmd_play. Subsequently, FFserver advances to code

segment E and goes back to code segment B immediately

since no new connection is caught by select.

Third loop begins with only one connected socket

descriptor which has been done RTSP signaling. The

procedure goes on as the second loop does, but action

differs in code segment D. Now the state of the UDP

socket descriptor of the connected socket is

RTSPSTAE_SEND_PACKET because the state has been

changed in rtsp_cmd_play (), FFserver would enter

packets_deliver and start to send one frame of the file the

connected socket descriptor requested in the RTSP

signaling. After FFserver sends one frame according to the

DTS and PTS, FFserver leaves this segment and goes to

code segment E. Until now, we complete third loop.

If there is no new connection, in the fourth loop

FFserver would do the same things as those do in third

loop. If there is a new connection, then in the fourth loop

FFserver would serve the old connected socket descriptor,

 52

catch this new connection by calling select, accept this

new connection by calling accept, and give this new

connection a different connected socket descriptor. Then

in the later loops, FFserver would take turns serving this

two connected socket descriptors.

3.2 RTSP Methods Implemented In FFserver

We now examine the pseudo codes of the four RTSP

methods which are implemented in FFserver.

3.2.1 RTSP_CMD_OPTIONS()

 The beginning method requested by VLC is

OPTIONS, so we check the pseudo code of

rtsp_cmd_options() firstly. Figure 3-13 exhibits the

pseudo codes, and this function just edits the RTSP

OPTIONS replies. And a detail description about

OPTIONS is depicted in section 2.1.3 .

 53

Figure 3- 13 Pseudo Codes of rtsp_cmd_options()

3.2.2 RTSP_CMD_DESCRIBE()

After the OPTIONS method is done, the second

method is DESCRIBE. Figure 3-14 is the pseudo codes of

rtsp_cmd_describe(). According RFC 2326, DESCRIBE

reply usually includes sdp, and we certainly see a function,

called prepare_sdp_description() which is responsible for

sdp preparations. Figure 3-15 is the pseudo codes of the

function, prepare_sdp_description(). Because DESCRIBE

reply should includes the codec type of the file the

connected socket descriptor requests, there should be a

part called parsing. In Figure 3-15, there is a sub-function

rtp_get_payload_type() which lets FFserver decide the

payload type of the file by checking the array listed in

Table 3-1.

 54

Figure 3- 14 Pseudo Codes of rtsp_cmd_describe()

Figure 3- 15 Pseudo Codes of prepare_sdp_description()

 55

Table 3- 1 Payload Types Constructed In FFserver

 56

3.2.3 RTSP_CMD_SETUP()

Clients receive the DESCRIBE reply and then send

the SETUP method. So we talk about the pseudo codes of

rtsp_cmd_setup() which is shown in Figure 3-16.

Figure 3- 16 Pseudo Codes of rtsp_cmd_setup()

In Figure 3-16, there are three sub-functions,

rtp_new_connection(), open_input_stream() and

rtp_new_av_stream(). The followings are the

introductions to three sub-functions.

 57

 rtp_new_connection()

- This sub-function does some SETUP method

messages initializations and is not as import as the

other two sub-functions.

 open_input_stream()

- From the name of the sub-function, we know it is

about the opening of the file stream. This

sub-function also tells the client from where the file

should play.

 rtp_new_av_sream()

This sub-function accounts for the setup of the file steam

which is just opened by open_input_stream().

 58

3.2.4 RTSP_CMD_PLAY()

The last method, PLAY method, shows its pseudo

codes in Figure 3-17. In Figure 3-17, a subfunction,

find_rtp_session_with_url(), sends the streams into their

sessions according to the mechanism specified in SETUP.

As we mentioned in the above discussion, the state of the

connection would change from

RTSPSTATE_WAIT_REQUEST to

RTSPSTATE_SEND_PACKET when FFserver gets a PLAY

request from the client. FFserver would create a UDP

socket which is responsible for sending RTP packets to the

connected socket descriptor. And this UDP socket

descriptor is assigned a RTSPSTAE_SEND_PACKET state

and a POLLOUT events. The connected socket descriptor

remains a RTSPSTATE_WAIT_REQUEST state.

Figure 3- 17 Pseudo Codes of rtsp_cmd_play()

 59

 If the state of the connected socket descriptor is

RTSP_STATE_SEND_PACKET, when to send the packets

is an important issue. Here, we introduce two timestamps,

presentation timestamp (PTS), and decode timestamp

(DTS). We explain these two as follows:

 PTS

- The timestamp indicates that when the picture must

be presented or displayed.

 DTS

- The timestamp demonstrates when the picture must

be decoded.

 After constructing these two timestamps, FFserver

can easily decide when to send the packets. We show PTS

and DTS in Figure 3-18 and Figure 3-19 respectively.

 60

Figure 3- 18 PTS : the pictures’ display order

Figure 3- 19 DTS : the pictures’ coding order

 61

CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we show some experimental results

which including pictures before and after the

modifications of RTSP in FFserver and timing of each

code segment.

4.1 Results before and after the modifications in

FFserver

Figure 4- 1 Old ffserver’s packets captured by Ethereal

 62

Figure 4-1 is the packet of old FFserver captured by

Wireshark. We can see that there is an error happened in

the reply of the DESCRIBE method. After we did the first

two modifications specified in section2.3, the result is

shown in Figure 4-2.

Figure 4- 2 Packets after first modifications

 Although we had done the first two modifications,

there is still an error. In order to debug this error, we

spent a lot of time on it. Finally, we did the third

 63

modification discussed in section 2.3, and the result is

displayed in Figure 4-3. Until now, VLC can connect to

FFserver by RTSP.

Figure 4- 3 All modifications are completed

 64

4.2 Procedure Of Code Segments

Figure 4- 4 Procedure of code segments

 In Figure 4-4, the procedures of each code

segment is shown. We can see that the procedure is the

 65

same as the one we discussed in section 3.1.6. Code

segment A is performed only one time. And if there is a

connected socket descriptor, the procedure would go in

sequence from code segment B to code segment D and

repeat until the connected socket descriptor is down. And

the detail time used by each code segment is shown in the

appendix . In appendix , we can see that sending is to send

a packet and the time in the bracket in the time elapsed is

the sending time.

 66

CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

In this thesis, we present the system architecture

and system flowchart of FFserver. We also show how to

modify FFserver so that VLC could connect to FFserver by

using RTSP signaling.

After the modifications are completed, VLC could

connect to FFserver and play multimedia data which are

streamed by FFserver. If the multimedia data are MPEG1

files, the quality of play is quite good on VLC. But if the

multimedia data are MPEG2 or MPEG4 files, the quality

would not as good as that of MPEG1 file on VLC.

In the future, we hope that FFserver would be

modified very well so that all clients could play in a better

quality no matter what kind of multimedia data streamed

by FFserver.

 The most important issue in any streaming server is

the timing control. If the timing control mechanism is

good, the streaming server is more stable.

 67

References

[1] “FFmpeg” available at http://ffmpeg.mplayerhq.hu/ .

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP :

A Transport Protocol for Real-Time Applications”, Audio Visual
Working Group Request for Comment RFC 3550, IETF, July
2003.

[3] H. Schulzrinne, A. Rao, R. Lanphier, M. Westerlund, and A.

Naraismhan, “Real time streaming protocol (RTSP)”, Internet
Draft RFC 2326, Internet Engineering Task Force, October 27,
2003.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T.

Berners-Lee, ”Hypertext Transfer Protocol – HTTP/1.1”,

[5] “Wikipedia” available at

http://en.wikipedia.org/wiki/Main_Page .

[6] “RTP Payload Type” available at

http://www.iana.org/assignments/rtp-parameters

[7] Chien-hua James Chen, ”Design and Implementation of

Real-time Interactive RTP/RTSP Multimedia Streaming
Monitoring System with Bandwidth Smoothing Technique,”
Master thesis, The Department of Communication Engineering,
National Chiao Tung University.

[8] Jong-Shou Wu, ”Analysis of Streaming Server’s Properties,”

Master thesis, The Department of Communication Engineering,
National Chiao Tung Unviersity.

[9] Wei-Tung Chang, “Development and Implementation of

Multimedia Streaming Platform,” Master thesis, The
Department of Communication Engineering, National Chiao
Tung University.

 68

Appendix

Code Segment Time Consumed (uSec)

B 4

C 15478

D 12

B 4

C 15979

D 65(10)

B 4

C 15931

D 85(8)

B 3

C 15903

D 17

B 45

C 15938

D 20

B 4

C 15973

D 45(8)

B 4

C 15948

D 19

B 4

C 15973

D 98(9)

B 4

C 15894

D 19

B 4

C 15973

D 62(8)

B 47

C 15886

D 19

SENDING

SENDING

SENDING

SENDING

SENDING

 69

B 4

C 15972

D 87(9)

B 4

C 15902

D 12

B 4

C 16025

D 90(12)

B 4

C 15861

D 35

B 5

C 20224

D 90(11)

B 72

C 15550

D 22

B 5

C 15990

D 79(9)

B 4

C 15889

D 13

B 4

C 15975

D 89(10)

B 4

C 15903

D 19

B 4

C 15970

D 80(7)

B 48

C 15869

SENDING

SENDING

SENDING

SENDING

SENDING

SENDING

 70

D 12

B 4

C 15978

D 46(7)

B 5

C 15946

D 13

B 4

C 15978

D 103(17)

B 4

C 15887

D 41

B 4

C 15951

D 32

B 42

C 15919

D 125(10)

B 4

C 15867

D 37(6)

B 3

C 15975

D 17

B 4

C 15954

D 30(6)

B 4

C 15966

D 25

B 5

C 15958

D 101(11)

B 5

C 15826

SENDING

SENDING

SENDING

SENDING

SENDING

SENDING

 71

D 23

B 4

C 15966

D 19

B 4

C 15989

D 48(6)

B 4

C 15927

D 39(7)

B 4

C 15950

D 12

B 4

C 15981

D 82(10)

B 12

C 15856

D 12

B 3

C 15978

D 26

B 4

C 15965

D 104(6)

B 4

C 15910

D 30(7)

B 4

C 15940

D 13

B 4

C 15977

D 130(9)

B 4

C 15862

SENDING

SENDING

SENDING

SENDING

SENDING

SENDING

 72

D 13

	封面.pdf
	書名頁.pdf
	NEW THESIS .pdf

